Mussel-inspired monomer - A new selective protease inhibitor against dentine collagen degradation.

Dent Mater

Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong. Electronic address:

Published: July 2022

Objectives: To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases.

Methods: The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software. All data obtained were analyzed by one-way ANOVA followed by Tukey test (α = 0.05).

Results: The anti-proteolytic ability of DMA increased in a dose-dependent manner except that of rhMMP-9. Inhibitory effect of 1 mM DMA against rhMMP-2, - 8, - 9, as well as cathepsin B and K was all significantly lower than 1 mM CHX (p < 0.05). The molecular docking analysis was in good agreement with the experimental results, that the binding energy of DMA was lower than CHX for all proteases. In situ zymography revealed that all DMA- and CHX-treated groups significantly inactivated the matrix-bound proteases, with a dramatic reduction of the fluorescence intensity and relative area compared with the control group (p < 0.05).

Significance: Under the prerequisite condition that the overall inhibitory performance on matrix-bound proteases was comparable by DMA and CHX, the more selective property of DMA could avoid inducing potential negative effects by suppressing MMP-9 when applied in dental treatment compared with CHX.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2022.05.002DOI Listing

Publication Analysis

Top Keywords

mussel-inspired monomer
8
dma
5
monomer selective
4
selective protease
4
protease inhibitor
4
inhibitor dentine
4
dentine collagen
4
collagen degradation
4
degradation objectives
4
objectives evaluate
4

Similar Publications

"Synergistic anticoagulant and endothelial regeneration strategy" based on mussel-inspired phospholipid copolymer coating and bioactive zeolitic imidazolate frameworks-90 to maintain the patency of CoCr stent.

Int J Biol Macromol

November 2024

School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin 300072, China. Electronic address:

Given the risks of poor patient compliance and bleeding associated with current dual antiplatelet therapies, it is urgent to develop the next generation of cardiovascular stents with anticoagulation and rapid endothelialization capabilities. Inspired by the prominent bioactivity and bioavailability of zeolitic imidazolate framework-90 (ZIF-90) in driving endothelial cell (EC) morphogenesis, this research proposes a "synergistic anticoagulant and endothelial regeneration strategy" depending on mussel-inspired phospholipid copolymer (MIPC) and ZIF-90. Depending on the copolymerization of the catechol with dopamine (Dopa) monomers, Dopa/MIPC coating was immobilized on the surface of CoCr via a one-pot process for resisting the initial thrombosis induced by platelets and fibrinogen.

View Article and Find Full Text PDF

Preparation and characterization of mussel-inspired chitosan/polydopamine films and their feasibility for oral mucosa application.

Int J Biol Macromol

November 2024

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Jiangxi 330006, China. Electronic address:

Oral mucosal lesions (OML), which represent a major public health issue worldwide, include any pathological changes in the oral mucosa, such as ulcers, pigmentation, and swelling. Due to its humid and dynamic complex environment, designing oral mucosal preparations poses significant challenges. Drawing inspiration from mussels, this study employed an eco-friendly one-pot strategy for the preparation of chitosan/polydopamine (CS/PDA) films.

View Article and Find Full Text PDF

Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices.

View Article and Find Full Text PDF

Wound management is a major challenge worldwide, placing a huge financial burden on the government of every nation. Wound dressings that can protect wounds, accelerate healing, prevent infection, and avoid secondary damage continue to be a major focus of research in the health care and clinical communities. Herein, a novel zwitterionic polymer (LST) hydrogel incorporated with [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA), mussel-inspired -[tris(hydroxymethyl)methyl] acrylamide (THMA), and lithium magnesium salt was prepared for functional wound dressings.

View Article and Find Full Text PDF

Mussel-Inspired Self-Adhesive and Tough Hydrogels for Effectively Cooling Solar Cells and Thermoelectric Generators.

ACS Appl Mater Interfaces

April 2024

Guangxi Key Laboratory for Relativity Astrophysics, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.

Adhesive hydrogel-based evaporative cooling, which necessitates no electricity input, holds promise for reducing energy consumption in thermal management. Herein, inspired by the surface attachment of mussel adhesive proteins via abundant dynamic covalent bonds and noncovalent interactions, we propose a facile strategy to fabricate a self-adhesive cooling hydrogel (Li-AA-TA-PAM) using a copolymer of acrylamide (AM) and acrylic acid (AA) as the primary framework. The monomers formed hydrogen bonds between their carboxyl and amide groups, while tannic acid (TA), rich in catechol groups, enhances the adhesion of the hydrogel through hydrogen bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!