AI Article Synopsis

  • The estrogen receptor α (ERα) undergoes post-translational modification through ufmylation, which enhances its stability and activity, playing a significant role in breast cancer progression.
  • Elevating ufmylation by reducing UFSP2 levels increases ERα stability, while blocking ufmylation by silencing UBA5 decreases it, highlighting the importance of specific lysine residues in this process.
  • Increased expression of UFM1 and its associated enzymes is observed in ERα-positive breast cancer cells, suggesting that ufmylation is crucial for ERα's transactivation function and may contribute to breast cancer development.

Article Abstract

The post-translational modification (e.g., phosphorylation) of estrogen receptor α (ERα) plays a role in controlling the expression and subcellular localization of ERα as well as its sensitivity to hormone response. Here, we show that ERα is also modified by UFM1 and this modification (ufmylation) plays a crucial role in promoting the stability and transactivity of ERα, which in turn promotes breast cancer development. The elevation of ufmylation via the knockdown of UFSP2 (the UFM1-deconjugating enzyme in humans) dramatically increases ERα stability by inhibiting ubiquitination. In contrast, ERα stability is decreased by the prevention of ufmylation via the silencing of UBA5 (the UFM1-activating E1 enzyme). Lys171 and Lys180 of ERα were identified as the major UFM1 acceptor sites, and the replacement of both Lys residues by Arg (2KR mutation) markedly reduced ERα stability. Moreover, the 2KR mutation abrogated the 17β-estradiol-induced transactivity of ERα and the expression of its downstream target genes, including pS2, cyclin D1, and c-Myc; this indicates that ERα ufmylation is required for its transactivation function. In addition, the 2KR mutation prevented anchorage-independent colony formation by MCF7 cells. Most notably, the expression of UFM1 and its conjugating machinery (i.e., UBA5, UFC1, UFL1, and UFBP1) were dramatically upregulated in ERα-positive breast cancer cell lines and tissues. Collectively, these findings implicate a critical role attributed to ERα ufmylation in breast cancer development by ameliorating its stability and transactivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200662PMC
http://dx.doi.org/10.14348/molcells.2022.0029DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
stability transactivity
12
cancer development
12
erα stability
12
2kr mutation
12
erα
11
transactivity erα
8
erα ufmylation
8
stability
6
ufmylation
5

Similar Publications

The implementation and side effect management of immune checkpoint inhibitors in gynecologic oncology: a JAGO/NOGGO survey.

BMC Cancer

January 2025

Young Academy of Gynecologic Oncology (JAGO), Nord-Ostdeutsche Gesellschaft für Gynäkologische Onkologie (NOGGO), Berlin, Germany.

Background: The integration of immune checkpoint inhibitors (ICIs) into routine gynecologic cancer treatment requires a thorough understanding of how to manage immune-related adverse events (irAEs) to ensure patient safety. However, reports on real-world clinical experience in the management of ICIs in gynecologic oncology are very limited. The aim of this survey was to provide a real-world overview of the experiences and the current state of irAE management of ICIs in Germany, Switzerland, and Austria.

View Article and Find Full Text PDF

Background: Over the past twenty years, the post-cancer rehabilitation has been developed, usually in a hospital setting. Although this allows better care organization and improved security, it is perceived as stressful and restrictive by the "cancer survivor". Therefore, the transfer of benefits to everyday life is more difficult, or even uncertain.

View Article and Find Full Text PDF

Triaging mammography with artificial intelligence: an implementation study.

Breast Cancer Res Treat

January 2025

Google Health, 1600 Amphitheatre Pkwy, Mountain View, CA, 94043, USA.

Purpose: Many breast centers are unable to provide immediate results at the time of screening mammography which results in delayed patient care. Implementing artificial intelligence (AI) could identify patients who may have breast cancer and accelerate the time to diagnostic imaging and biopsy diagnosis.

Methods: In this prospective randomized, unblinded, controlled implementation study we enrolled 1000 screening participants between March 2021 and May 2022.

View Article and Find Full Text PDF

Background: The identification of circulating potential biomarkers may help earlier diagnosis of breast cancer, which is critical for effective treatment and better disease outcomes. We aimed to study the role of circ-FAF1 as a diagnostic biomarker in female breast cancer using peripheral blood samples of these patients, and to investigate the relation between circ-FAF1 and different clinicopathological features of the included patients.

Methods And Results: This case-control study enrolled 60 female breast cancer patients and 60 age-matched healthy control subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!