Heavily modified headwater streams and open ditches carry high nitrogen loads from agricultural soils that sustain eutrophication and poor water quality in downstream aquatic ecosystems. To remediate agricultural streams and reduce the export of nitrate (NO), phosphorus and suspended sediments, two-stage ditches with constructed floodplains can be implemented as countermeasures. By extending hydrological connectivity between the stream channel and riparian corridor within constructed floodplains, these remediated ditches enhance the removal of NO via the microbial denitrification process. Ten remediated ditches were paired with upstream trapezoidal ditches in Sweden across different soils and land uses to measure the capacity for denitrification and nitrous oxide (NO) production and yields under denitrifying conditions in stream and floodplain sediments. To examine the controls for denitrification, water quality was monitored monthly and flow discharge continuously along reaches. Floodplain sediments accounted for 33 % of total denitrification capacity of remediated ditches, primarily controlled by inundation and stream NO concentrations. Despite reductions in flow-weighted NO concentrations along reaches, NO removal in remediated ditches via denitrification can be masked by inputs of NO-rich groundwaters, typical of intensively managed agricultural landscapes. Although NO production rates were 50 % lower in floodplains compared to the stream, remediated ditches emitted more NO than conventional trapezoidal ditches. Higher denitrification rates and reductions of NO proportions were predicted by catchments with loamy soils, higher proportions of agricultural land use and lower floodplain elevations. For realizing enhanced NO removal from floodplains and avoiding increased NO emissions, soil type, land use and the design of floodplains need to be considered when implementing remediated streams. Further, we stress the need for assessing the impact of stream remediation in the context of broader catchment processes, to determine the overall potential for improving water quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156513 | DOI Listing |
Int J Phytoremediation
December 2024
Department of Ecology, Jinan University, Guangzhou, China.
Vegetated ditches have been demonstrated to be an effective method for pollutant remediation. This study assesses the removal potential and pathways for herbicide runoff pollution utilizing , , , and ditches. Resultes show these vegetated ditches significantly outperform unvegetated ones in removing atrazine and diuron during runoff events ( < 0.
View Article and Find Full Text PDFWater Res
December 2024
School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Wenyuan Road 1, Nanjing 210023, PR China. Electronic address:
Coupling of iron-carbon can form a mixotrophic denitrification and is regarded as a promising solution for purifying nitrate-rich agricultural runoff. However, its prevalence and efficacy of the synergistic augmentation of nitrogen elimination and net NO sinks remain crucial knowledge gaps in ecological ditches (eco-ditches). Here, we investigated the underlying variability mechanisms by implementing sponge iron (sFe)-coupled Iris hexagonus (IH)- or Myriophyllum aquaticum (MA)-derived biochar produced via microwave-assisted (MW) pyrolysis and conventional pyrolysis.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2024
Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 91120, Palaiseau, France.
The intensification of agriculture has promoted the simplification and specialization of agroecosystems, resulting in negative impacts such as decreasing landscape heterogeneity and increasing use of plant protection products (PPP), with the acceleration of PPP transfers to environmental compartments and loss in biodiversity. In this context, the present work reviews the various levers for action promoting the prevention and management of these transfers in the environment and the available modelling tools. Two main categories of levers were identified: (1) better control of the application, including the reduction of doses and of PPP dispersion during application thanks to appropriate equipment and settings, PPP formulations and consideration of meteorological conditions; (2) reduction of post-application transfers at plot scales (soil cover, low tillage, organic matter management, remediation etc.
View Article and Find Full Text PDFJ Environ Manage
November 2024
MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China. Electronic address:
Containing only low levels of U-bearing minerals, U ores often have to undergo hydrometallurgical processing for the separation of other minerals. Hydrometallurgical operations, even after being shut down, could pose radiological risk to the ecosystem and human health due to the radionuclide contamination of surrounding environmental media. This study investigated the contamination of radionuclides in the agricultural topsoils downstream of a decommissioned hydrometallurgical U plant in southern China, and assessed the corresponding radiological risk and evaluated its impact on soil microbial communities.
View Article and Find Full Text PDFJ Hazard Mater
April 2024
Catalytic Reaction Engineering Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand 247667, India.
Rania-Khan Chandpur site, (Kanpur Dehat, Uttar Pradesh, India), one of the highly Chromium (Cr) contaminated sites in India due to Chromite Ore Processing Residue (COPR), has been investigated at the field-scale. We found that the area around the COPR dumps was hazardously contaminated with the Cr where its concentrations in the surface water and groundwater were > 40 mgL, its maximum contents in the COPRs and in the soils of the adjoining lands were 9.6 wt% and 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!