Urban rivers dynamically interfered by anthropogenic activities are considered as a vital reservoir of antibiotic resistance genes (ARGs). Here, a total of 198 ARGs and 12 mobile genetic elements (MGEs) were profiled in water and sediment from the Chaobai river, Beijing. The total abundances of ARGs (1.01 × 10-4.58 × 10 copies/L in water and 2.92 × 10-3.34 × 10 copies/g in sediment), which were dominated by beta-lactamase genes, exhibited significant seasonal variations (p < 0.05). Significant linear correlations between the total abundances of ARGs and MGEs were observed in both water and sediment (p < 0.01). Variance partitioning analysis disclosed that environmental variables (i.e., water temperature (WT), dissolved oxygen (DO), nutrients, metals, etc.) and antibiotics were the main contributors to the variations of ARGs and MGEs, and explained 55-80 % and 27-67 % of the total variations in ARGs and MGEs, respectively. The partial least-squares path model revealed the ARG abundances in water and sediment were affected by environmental variables and antibiotics both directly and indirectly but by MGEs directly. Moreover, random forest algorithm explored that WT, Ni, DO, Co, and polyether and macrolide antibiotics were the main drivers (>10 %) of ARGs dissemination in water, whereas the transposase genes of Tp614, tnpA, and IS613 were the main drivers of ARGs dissemination in both water and sediment. This study provides a comprehensive understanding of the driving factors for the ARGs dissemination in an urban river, which is of great significance for risk management of antibiotic resistome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.156536 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Large-scale water diversion projects are essential for meeting the needs of water-stressed regions, necessitating an evaluation of their impact on water quality and aquatic ecosystems. This study provides the first snapshots of organic micropollutants (OMPs) along the 1466 km Eastern Route of China's South-to-North Water Diversion Project. Using nontarget analysis with ultrahigh-performance liquid chromatography and high-resolution mass spectrometry, we identified and quantified 357 OMPs from water samples collected during the water diversion period (WDP) and the nonwater diversion period (NWDP).
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
Heterotrophic denitrifiers play crucial roles in global carbon and nitrogen cycling. However, their inability to oxidize sulfide renders them vulnerable to this toxic molecule, which inhibits the key enzymatic reaction responsible for reducing nitrous oxide (NO), thereby raising greenhouse gas emissions. Here, we applied microcosm incubations, community-isotope-corrected DNA stable-isotope probing, and metagenomics to characterize a cohort of heterotrophic denitrifiers in estuarine sediments that thrive by coupling sulfur oxidation with denitrification through chemolithoheterotrophic metabolism.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Life Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, Sichuan, P.R. China; Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China. Electronic address:
Microplastic (MP) pollution has become one of global concern. While MP pollution in lakes has been well studied, research on MP sources, distribution, and ecological risks in the Tibetan Plateau is limited. We systematically investigated the MP abundance and distribution in alpine travertine lakes in Jiuzhai nature reserve located in east edge of Qinghai-Tibetan Plateau and assessed the distributions of microbiomes, antibiotic resistance genes (ARGs), and virulence factor genes (VFGs) in water, sediments, and MPs, using macrogenomics.
View Article and Find Full Text PDFEnviron Int
January 2025
School of Environment, South China Normal University, University Town, Guangzhou, China. Electronic address:
The extensive use of antibiotics has led to their frequent detection as residues in the environment. However, monitoring of their levels in groundwater and the associated ecological and health risks remains limited, and the impact of river pollution on groundwater is still unclear. This study focused on the highly urbanized Maozhou River and its groundwater.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!