A molecular clock controls periodically driven cell migration in confined spaces.

Cell Syst

Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA. Electronic address:

Published: July 2022

Navigation through a dense, physically confining extracellular matrix is common in invasive cell spread and tissue reorganization but is still poorly understood. Here, we show that this migration is mediated by cyclic changes in the activity of a small GTPase RhoA, which is dependent on the oscillatory changes in the activity and abundance of the RhoA guanine nucleotide exchange factor, GEF-H1, and triggered by a persistent increase in the intracellular Ca levels. We show that the molecular clock driving these cyclic changes is mediated by two coupled negative feedback loops, dependent on the microtubule dynamics, with a frequency that can be experimentally modulated based on a predictive mathematical model. We further demonstrate that an increasing frequency of the clock translates into a faster cell migration within physically confining spaces. This work lays the foundation for a better understanding of the molecular mechanisms dynamically driving cell migration in complex environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cels.2022.05.005DOI Listing

Publication Analysis

Top Keywords

cell migration
12
molecular clock
8
physically confining
8
cyclic changes
8
changes activity
8
clock controls
4
controls periodically
4
periodically driven
4
cell
4
driven cell
4

Similar Publications

Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.

Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Background: Gasdermin D (GSDMD) is a key effector molecule that activates pyroptosis through its N terminal domain (GSDMD-NT). However, the roles of GSDMD in colorectal cancer (CRC) have not been fully explored. The role of the full-length GSDMD (GSDMD-FL) is also not clear.

View Article and Find Full Text PDF

Background: The overall prognosis of patients with esophageal cancer (EC) is extremely poor. There is an urgent need to develop innovative therapeutic strategies. This study will investigate the anti-cancer effects of exosomes loaded with specific anti-cancer microRNAs in vivo and in vitro.

View Article and Find Full Text PDF

Spatial transcriptomics reveals unique metabolic profile and key oncogenic regulators of cervical squamous cell carcinoma.

J Transl Med

December 2024

Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430070, China.

Background: As a prevalent and deadly malignant tumor, the treatment outcomes for late-stage patients with cervical squamous cell carcinoma (CSCC) are often suboptimal. Previous studies have shown that tumor progression is closely related with tumor metabolism and microenvironment reshaping, with disruptions in energy metabolism playing a critical role in this process. To delve deeper into the understanding of CSCC development, our research focused on analyzing the tumor microenvironment and metabolic characteristics across different regions of tumor tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!