Malignant rhabdoid tumour (MRT) is a rare and aggressive paediatric tumour that typically arises in the kidneys or central nervous system (CNS). The malignancy often affects patients under the age of three and is associated with an extremely poor survival rate, with most deaths occurring within the first year of presentation. Thus, there is an unmet and urgent medical need for novel therapeutic strategies for this malignancy. One of the major issues when treating MRT patients is the emergence of chemoresistance. Autophagy has become an area of focus in the study of chemoresistance due to its reported dual role as both a pro-survival and pro-death mechanism. The role of autophagy in the chemotherapeutic response of MRT remains largely unknown. A greater understanding of the role of autophagy may lead to the development of therapeutic strategies to enhance chemotherapeutic effect and improve the clinical outcome of MRT patients. This study evaluated the cellular response to cisplatin, a representative chemotherapeutic agent used in the treatment of MRT, and the role of autophagy in mediating cisplatin resistance. Our results demonstrated that cisplatin induced apoptosis and autophagy concomitantly in a panel of MRT cell lines. Furthermore, inhibition of caspase-induced apoptosis with Z-VAD-FMK also inhibited autophagy levels demonstrating a complex interplay between these two pathways. In addition, blocking autophagy at the early stages of the autophagic process using the pharmacological inhibitor SAR405 or through the genetic knockdown of critical autophagic protein ATG5 by siRNA did not sensitise cells to cisplatin-induced apoptosis. Collectively, these results suggest that induction of autophagy does not appear to elicit a pro-survival effect in the chemotherapeutic response of MRT cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ctarc.2022.100584 | DOI Listing |
ASN Neuro
January 2025
School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
We previously identified a role for dAuxilin (dAux), the fly homolog of Cyclin G-associated kinase, in glial autophagy contributing to Parkinson's disease (PD). To further dissect the mechanism, we present evidence here that lack of glial dAux enhanced the phosphorylation of the autophagy-related protein Atg9 at two newly identified threonine residues, T62 and T69. The enhanced Atg9 phosphorylation in the absence of dAux promotes autophagosome formation and Atg9 trafficking to the autophagosomes in glia.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Wuhan Wuchang Hospital, Affiliated to Wuhan University of Science and Technology, Wuhan, China.
Atherosclerosis (AS) is a chronic inflammatory vascular disease and the primary pathological basis of cardiovascular diseases. Epigallocatechin-3-gallate (EGCG), the most abundant polyphenol compound in green tea, has garnered significant attention in recent years for its protective effects against AS. EGCG possesses properties that lower lipid levels, exhibit antioxidant and anti-inflammatory activities, enhance plaque stability, and promote the recovery of endothelial function.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.
View Article and Find Full Text PDFMol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!