Background: Gestational hypertension (GH), preeclampsia (PE), and gestational diabetes mellitus (GDM) are common pregnancy complications and can result in maternal and prenatal morbidity and mortality. Air pollution exposure could adversely impact pregnancy complications; however, evidence remains limited in China, where ambient air pollution is relatively severe.
Objective: This study aims to examine the associations of GH, PE, and GDM with exposure to six air pollutants (PM PM, SO, NO, O, and CO) during pregnancy.
Methods: Leveraging a multicenter birth cohort study among pregnant women in 24 hospitals from 15 provinces in China, we obtained data for maternal characteristics and pregnancy outcomes. We generated ambient concentrations of the six air pollutants using a combination of chemical transport model simulations with monitoring data. We used multivariable logistic regression models to estimate the effects on pregnancy complications from exposure to six air pollutants in each trimester and the entire pregnancy.
Results: Among the total 3754 pregnant women in this study, the prevalences of GH, GDM, and PE were 2.6 %, 11.2 %, and 0.7 %, respectively. GH risk increased 11.9 % (95 % CI, -8.5 %, 36.8 %) and 13.8 % (1.4 %, 27.8 %) per 10 μg/m increases in PM and PM in the entire pregnancy, respectively. PM and PM exposures in the first trimester were significantly associated with an increased risk of GDM. Exposure to O, SO, NO, and CO in early pregnancy could be associated with GDM risk. Geographic region and season of conception may influence the associations of GH and PE with air pollution.
Conclusions: Ambient particulate matter pollution adversely affects GH, GDM, and PE among Chinese pregnant women. Since most regions of China still suffer from hazardous levels of air pollution, our findings indicate importance of better protecting pregnant women from the risk of air pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2022.113727 | DOI Listing |
Environ Health
December 2024
Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.
Background: Ambient air pollution is a known risk factor for several chronic health conditions, including pulmonary dysfunction. In recent years, studies have shown a positive association between exposure to air pollutants and the incidence, morbidity, and mortality of a COVID-19 infection, however the time period for which air pollution exposure is most relevant for the COVID-19 outcome is still not defined. The aim of this study was to analyze the difference in association when varying the time period of air pollution exposure considered on COVID-19 infection within the same cohort during the first wave of the pandemic in 2020.
View Article and Find Full Text PDFBMJ Open
December 2024
Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
Objectives: To examine the association between maternal plasma cotinine concentrations during pregnancy and attention-deficit/hyperactivity disorder (ADHD) related characteristics in children.
Design: Prospective birth cohort study from the Hokkaido Study on Environment and Children's Health.
Setting: Hokkaido, Japan.
Environ Res
December 2024
University Children's Hospital Basel UKBB, University of Basel, Basel, Switzerland. Electronic address:
Background: Little is known about the mediating role of nasal microbiome on the association between pre- and postnatal air pollution exposure and subsequent respiratory morbidity in infancy. We aimed to examine the impact of air pollution on microbiome and respiratory symptoms, and whether microbiome mediates the association between air pollution and symptoms.
Methods: Nasal swabs from 270 infants in the prospective Basel-Bern Infant Lung Development cohort were analyzed by 16S ribosomal RNA gene sequencing.
Environ Res
December 2024
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
Background: The adverse health effects of air pollution are well-established. Previous reviews have highlighted disparities in air pollution exposure between minoritized ethnic groups and majoritized ethnic groups. However, these reviews primarily focused on proximity to pollution sources rather than objectively measured concentrations.
View Article and Find Full Text PDFEnviron Res
December 2024
Perelman School of Medicine, University of Pennsylvania, 3451 Walnut St, Philadelphia, PA 19104, USA; The Center of Applied Genomics, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, 19104, Philadelphia, PA, USA; Division of Pulmonary and Sleep Medicine, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, 19104, Philadelphia, PA, USA.
Rationale: Ambient air pollution (AAP) is linked to asthma outcomes, but predicting individual risk remains challenging. Understanding genetic contributors to AAP sensitivity may help overcome this gap.
Objectives: To determine if single nucleotide polymorphisms (SNPs) are associated with AAP sensitivity in children with asthma.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!