This study aimed to investigate physicochemical, functional and antioxidant properties of mung bean protein (MBP) enzymatic hydrolysates (MBPEHs) by alcalase, neutrase, protamex, flavourzyme and papain. Physicochemical properties were evaluated by SDS-PAGE, particle size distribution, FTIR, ultraviolet visible and fluorescence spectrophotometries. ABTS, hydroxyl scavenging, Fe chelating activity were used to evaluate antioxidant activity. Enzymolysis with five proteases decreased average particle size, α-helix, β-sheet, surface hydrophobicity of hydrolysates. Alcalase hydrolysate had the highest degree of hydrolysis (23.55%), absolute zeta potential (33.73 mV) and the lowest molecular weight (<10 kDa). Protamex and papain hydrolysates had higher foaming capacities, emulsification activity indexes, emulsion stability indexes (235.00%, 123.07 m/g, 132.54 min; 200.10%, 105.39 m/g, 190.67 min) than MBP (135.03%, 20.03 m/g, 30.88 min). Alcalase hydrolysate demonstrated the lowest IC (mg/mL) in ABTS (0.12), hydroxyl (2.98), Fe chelating (0.22). These results provide support for application of MBPEHs as foaming agent, emulsifier and antioxidant in food industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2022.133397DOI Listing

Publication Analysis

Top Keywords

physicochemical functional
8
functional antioxidant
8
antioxidant properties
8
properties mung
8
mung bean
8
bean protein
8
enzymatic hydrolysates
8
particle size
8
protein enzymatic
4
hydrolysates study
4

Similar Publications

Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases.

View Article and Find Full Text PDF

Strawberry (Fragaria × ananassa) is a horticultural crop known for its sensitivity to mechanical damage and susceptibility to postharvest decay. In recent years, various strategies have been implemented to enhance both the yield and quality of strawberries, among which the application of nitric oxide-producing compounds has garnered special attention. The present study aimed to investigate the effects of varying concentrations of sodium nitroprusside (SNP), specifically 0, 200, 400, and 600 μM, on strawberries (cv.

View Article and Find Full Text PDF

Due to their outstanding electrical and thermal properties, graphene and related materials have been proposed as ideal candidates for the development of lightweight systems for thermoelectric applications. Recently, the nanolaminate architecture that entails alternation of continuous graphene monolayers and ultrathin polymer films has been proposed as an efficient route for the development of composites with impressive physicochemical properties. In this work, we present a novel layer-by-layer approach for the fabrication of highly ordered, flexible, heat-resistant, and electrically conductive freestanding graphene/polymer nanolaminates through alternating Marangoni-driven self-assembly of reduced graphene oxide (rGO) and poly(ether imide) (PEI) films.

View Article and Find Full Text PDF

Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis.

Adv Colloid Interface Sci

December 2024

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:

Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts.

View Article and Find Full Text PDF

Core-Shell Magnetic Particles: Tailored Synthesis and Applications.

Chem Rev

December 2024

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China.

Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!