Purpose: To investigate the feasibility and accuracy of radiomics models based on contrast-enhanced CT (CECT) in the prediction of perineural invasion (PNI), so as to stratify high-risk recurrence and improve the management of patients with gastric cancer (GC) preoperatively.
Methods: Total of 154 GC patients underwent D2 lymph node dissection with pathologically confirmed GC and preoperative CECT from an open-label, investigator-sponsored trial (NCT01711242) were enrolled. Radiomics features were extracted from contoured images and selected using Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) after inter-class correlation coefficient (ICC) analysis. Models based on radiomics features (R), clinical factors (C) and combined parameters (R + C) were built and evaluated using Support Vector Machine (SVM) and logistic regression to predict the PNI for patients with GC preoperatively.
Results: Total of 11 radiomics features were selected for final analysis, along with two clinical factors. The area under curve (AUC) of models based on R, C, and R + C with logistic regression and SVM were 0.77 vs. 0.83, 0.71 vs.0.70, 0.86 vs. 0.90, and 0.73 vs.0.80, 0.62 vs. 0.64, 0.77 vs. 0.82 in the training and testing cohorts, respectively. SVM(R + C) achieved a best AUC of 0.82(0.69-0.94) in the test cohorts with a sensitivity, specificity and accuracy of 0.63, 0.91, and 0.77, respectively.
Conclusions: The performance of these models indicates that radiomics features alone or combined with clinical factors provide a feasible way to classify patients preoperatively and improve the management of patients with GC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2022.110393 | DOI Listing |
Cardiovasc Diagn Ther
December 2024
The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China.
Background And Objective: Radiomics is an emerging technology that facilitates the quantitative analysis of multi-modal cardiac magnetic resonance imaging (MRI). This study aims to introduce a standardized workflow for applying radiomics to non-ischemic cardiomyopathies, enabling clinicians to comprehensively understand and implement this technology in clinical practice.
Methods: A computerized literature search (up to August 1, 2024) was conducted using PubMed to identify relevant studies on the roles and workflows of radiomics in non-ischemic cardiomyopathy.
BMC Cancer
January 2025
Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, Henan, China.
Objectives: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).
Methods: DWI and clinical data from 155 EC patients were included in this study, consisting of 80 in the training set, 35 in the test set, and 40 in the external validation set. Radiomics features, convolutional neural network-based DL features, and clinical variables were analyzed.
BMC Cancer
January 2025
Department of Radiology, Xiangtan Central Hospital, Xiangtan, 411000, P. R. China.
Background: This study aims to quantify intratumoral heterogeneity (ITH) using preoperative CT image and evaluate its ability to predict pathological high-grade patterns, specifically micropapillary and/or solid components (MP/S), in patients diagnosed with clinical stage I solid lung adenocarcinoma (LADC).
Methods: In this retrospective study, we enrolled 457 patients who were postoperatively diagnosed with clinical stage I solid LADC from two medical centers, assigning them to either a training set (n = 304) or a test set (n = 153). Sub-regions within the tumor were identified using the K-means method.
Sci Rep
January 2025
Department of Computer Engineering, Inha University, Incheon, Republic of Korea.
The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Y.X., B.X., Z.W., C.P., M.X.). Electronic address:
Rationale And Objectives: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).
Methods: 506 patients were retrospectively enrolled from three independent institutes and divided into the training (n=357) and external test (n=149) sets. Ki67 expression was determined by immunohistochemistry (IHC) and categorized into low (<15%) and high (≥15%) expression groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!