Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although modulation of claudin-1-based tight junction (TJ) in stratum granulosum is an option for transdermal absorption of drugs, granular permeation enhancers have never been developed. We previously found that homoharringtonine (HHT), a natural alkanoid, weakened intestinal epithelial barrier with changing expression and cellular localization of TJ components such as claudin-1 and claudin-4. In the present study, we investigated whether HHT is an epidermal granular permeation enhancer. Treatment of normal human epidermal keratinocytes (NHEK) cells with HHT decreased claudin-1 and claudin-4 but not zonula occludens-1 and E-cadherin. HHT lowered TJ-integrity in NHEK cells, accompanied by permeation-enhancement of dextran (4 kDa) in a dose-dependent manner. Transdermal treatment of mice with HHT weakened epidermal barrier. HHT treatment enhanced transdermal absorption of dextran with a molecular mass of up to 10 kDa. Together, HHT may be a transdermal absorption enhancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.04.067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!