Mitigating trade-offs between different resource-utilization functions is key to an organism's ecological and evolutionary success. These trade-offs often reflect metabolic constraints with a complex molecular underpinning; therefore, their consequences for evolutionary processes have remained elusive. Here, we investigate how metabolic architecture induces resource utilization constraints and how these constraints, in turn, elicit evolutionary specialization and diversification. Guided by the metabolic network structure of the bacterium Lactococcus cremoris, we selected two carbon sources (fructose and galactose) with predicted co-utilization constraints. By evolving L. cremoris on either fructose, galactose or a mix of both sugars, we imposed selection favoring divergent metabolic specializations or co-utilization of both resources, respectively. Phenotypic characterization revealed the evolution of either fructose or galactose specialists in the single-sugar treatments. In the mixed sugar regime, we observed adaptive diversification: both specialists coexisted, and no generalist evolved. Divergence from the ancestral phenotype occurred at key pathway junctions in the central carbon metabolism. Fructose specialists evolved mutations in the fbp and pfk genes that appear to balance anabolic and catabolic carbon fluxes. Galactose specialists evolved increased expression of pgmA (the primary metabolic bottleneck of galactose metabolism) and silencing of ptnABCD (the main glucose transporter) and ldh (regulator/enzyme of downstream carbon metabolism). Overall, our study shows how metabolic network architecture and historical contingency serve to predict targets of selection and inform the functional interpretation of evolved mutations. The elucidation of the relationship between molecular constraints and phenotypic trade-offs contributes to an integrative understanding of evolutionary specialization and diversification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9206417PMC
http://dx.doi.org/10.1093/molbev/msac124DOI Listing

Publication Analysis

Top Keywords

metabolic network
12
evolutionary specialization
12
fructose galactose
12
network structure
8
specialization diversification
8
galactose specialists
8
carbon metabolism
8
specialists evolved
8
evolved mutations
8
metabolic
7

Similar Publications

Purpose: A recent update of consensus guidelines for the management of Cushing's disease (CD) included indications for medical therapy. However, there is limited evidence regarding their implementation in clinical practice. This study aimed to evaluate current medical therapy approaches by expert pituitary centers through an audit conducted to validate the criteria of Pituitary Tumors Centers of Excellence (PTCOEs) and provide an initial standard of medical care for CD.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.

View Article and Find Full Text PDF

Identification of novel hub gene and biological pathways associated with ferroptosis in In-Stent restenosis.

Gene

January 2025

Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine/The First Affiliated Hospital, Shihezi University, Shihezi 832002 China; Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524000 Guangdong, China. Electronic address:

Background: In-stent restenosis (ISR) is one of the most significant complications following percutaneous coronary intervention (PCI) in patients with coronary artery disease (CAD). Ferroptosis is a novel cell death mode characterized by iron overload and lipid peroxidation. However, the role of ferroptosis in vascular smooth muscle cells (VSMCs) regulating neointimal formation during restenosis remains unclear.

View Article and Find Full Text PDF

Transcriptome analysis reveals molecular mechanism of Dosinia corrugata in response to acute heat stress.

Comp Biochem Physiol Part D Genomics Proteomics

January 2025

College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China. Electronic address:

This study seeks to explore the molecular regulatory mechanism within Dosinia corrugata in response to extreme high-temperature conditions, aiming to enhance the sustainable development of the D. corrugata aquaculture industry. To identify heat-responsive genes and elucidate adaptive mechanisms, we conducted transcriptional profiling of D.

View Article and Find Full Text PDF

In recent years, metabolite identification of chemical constituents of traditional Chinese medicine (TCM) has been extensively studied. However, due to the intricacy of metabolic processes and the low concentration of metabolites, identifying metabolites of TCM in vivo is still a tough work. Meanwhile, credibility of metabolite identification through mass spectrum technology has been called into question by reason of the lack of metabolite standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!