A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamical differential covariance recovers directional network structure in multiscale neural systems. | LitMetric

Investigating neural interactions is essential to understanding the neural basis of behavior. Many statistical methods have been used for analyzing neural activity, but estimating the direction of network interactions correctly and efficiently remains a difficult problem. Here, we derive dynamical differential covariance (DDC), a method based on dynamical network models that detects directional interactions with low bias and high noise tolerance under nonstationarity conditions. Moreover, DDC scales well with the number of recording sites and the computation required is comparable to that needed for covariance. DDC was validated and compared favorably with other methods on networks with false positive motifs and multiscale neural simulations where the ground-truth connectivity was known. When applied to recordings of resting-state functional magnetic resonance imaging (rs-fMRI), DDC consistently detected regional interactions with strong structural connectivity in over 1,000 individual subjects obtained by diffusion MRI (dMRI). DDC is a promising family of methods for estimating connectivity that can be generalized to a wide range of dynamical models and recording techniques and to other applications where system identification is needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9214501PMC
http://dx.doi.org/10.1073/pnas.2117234119DOI Listing

Publication Analysis

Top Keywords

dynamical differential
8
differential covariance
8
multiscale neural
8
covariance ddc
8
neural
5
ddc
5
dynamical
4
covariance recovers
4
recovers directional
4
directional network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!