A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Folate derivatives, 5-methyltetrahydrofolate and 10-formyltetrahydrofolate, protect BEAS-2B cells from high glucose-induced oxidative stress and inflammation. | LitMetric

Folate (vitamin B) and its biologically active derivatives are well-known antioxidant molecules protecting cells from oxidative degradation. The presence of high glucose, often found in diabetic patients, causes oxidative stress resulting in cellular stress and inflammatory injury. Cells in organs such as the lung are highly prone to inflammation, and various protective mechanisms exist to prevent the progressive disorders arising from inflammation. In the present study, the synthetic form of folate, i.e. folic acid, and active forms of folate, i.e. 5-methyltetrahydrofolate and 10-formyltetrahydrofolate, were evaluated for their antioxidant and antiinflammatory potential against high glucose (50 mM)-mediated oxidative stress and inflammation in BEAS-2B cells, an immortalised bronchial epithelial cell line. High glucose treatment showed a 67% reduction in the viability of BEAS-2B cells, which was restored to the viability levels seen in control cultures by the addition of active folate derivatives to the culture media. The DCFH-DA fluorometric assay was performed for oxidative stress detection. The high glucose-treated cells showed a significantly higher fluorescence intensity (1.81- and 3.8-fold for microplate assay and microscopic observation, respectively), which was normalised to control levels on supplementation with active folate derivatives. The proinflammatory NF-κB p50 protein expression in the active folate derivative-supplemented high glucose-treated cells was significantly lower compared to the folic acid treatment. In support of these findings, in silico microarray GENVESTIGATOR database analysis showed that in bronchiolar small airway epithelial cells exposed to inflammatory condition, folate utilization pathway genes are largely downregulated. However, the folate-binding protein gene, which encodes to the folate receptor 1 (FOLR1), is significantly upregulated, suggesting a high demand for folate by these cells  in inflammatory situations. Supplementation of the active folate derivatives 5-methyltetrahydrofolate and 10-formyltetrahydrofolate resulted in significantly higher protection over the folic acid from high glucose-induced oxidative stress and inflammation. Therefore, the biologically active folate derivatives could be a suitable alternative over the folic acid for alleviating inflammatory injury-causing oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179225PMC
http://dx.doi.org/10.1007/s11626-022-00691-wDOI Listing

Publication Analysis

Top Keywords

oxidative stress
24
folate derivatives
20
active folate
20
folic acid
16
5-methyltetrahydrofolate 10-formyltetrahydrofolate
12
beas-2b cells
12
stress inflammation
12
high glucose
12
folate
10
derivatives 5-methyltetrahydrofolate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!