Background: Breast cancer is one of the most common malignant tumor in women. The high metastatic characteristics cause a high mortality rate of breast cancer. Increasing number of studies have indicated that long non-coding RNAs (lncRNAs) play key roles in the progression of human cancers including breast cancer. In this study, we studied the expression and molecular mechanisms of lncRNA FOXD3-AS1 in breast cancer.
Methods: The expression of lncRNA FOXD3-AS1 was analyzed by TCGA database and RT-qPCR assay. CCK8 assay was used to measure cell proliferation ability. Cell migration and invasion capacities were detected by transwell assay. Potential targets of lncRNA and miRNA were predicted by bioinformatic tools. The targeting relationship between genes was verified by dual-luciferase reporter assay. The nude mice tumor model was performed to study the effect of FOXD3-AS1 on breast cancer in vivo. Protein expression was detected by western blot.
Results: In the present study, we found that the FOXD3-AS1 expression was significantly increased in breast cancer tissues compared with normal tissues and involved in the poor prognosis of patients. Functionally, knockdown of FOXD3-AS1 suppressed cell proliferation and metastasis abilities in vitro, and tumor growth in vivo. Mechanistically, FOXD3-AS1 functioned as a competing endogenous RNA (ceRNA) to upregulate ARF6 expression by targeting miR-127-3p. In addition, the roles of FOXD3-AS1 on cell proliferation and metastasis were achieved through miR-127-3p/ARF6 axis.
Conclusion: In summary, our results reported the regulatory mechanism of FOXD3-AS1 in breast cancer progression by targeting miR-127-3p/ARF6 axis to affect cell proliferation, migration, invasion and tumor growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12282-022-01373-x | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!