Covalent triazine frameworks (CTFs) are among the most valuable frameworks owing to many fantastic properties. However, molten salt-involved preparation of CTFs at 400-600 °C causes debate on whether CTFs represent organic frameworks or carbon. Herein, new CTFs based on the 1,3-dicyanoazulene monomer (CTF-Azs) are synthesized using molten ZnCl at 400-600 °C. Chemical structure analysis reveals that the CTF-Az prepared at low temperature (400 °C) exhibits polymeric features, whereas those prepared at high temperatures (600 °C) exhibit typical carbon features. Even after being treated at even higher temperatures, the CTF-Azs retain their rich porosity, but the polymeric features vanish. Although structural de-conformation is a widely accepted outcome in polymer-to-carbon rearrangement processes, the study evaluates such processes in the context of CTF systems. A proof-of-concept study is performed, observing that the as-synthesized CTF-Azs exhibit promising performance as cathodes for Li- and K-ion batteries. Moreover, the as-prepared NPCs exhibit excellent catalytic oxygen reduction reaction (ORR) performance; hence, they can be used as air cathodes in Zn-air batteries. This study not only provides new building blocks for novel CTFs with controllable polymer/carbon features but also offers insights into the formation and structure transformation history of CTFs during thermal treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202200392 | DOI Listing |
J Chromatogr A
January 2025
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China. Electronic address:
Herein, using 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl) tris(1,1'-biphenyl) trianiline (Ttba) as ligands, nitrogen-rich triazine unit-based covalent organic frameworks (COFs) with a suitable pore size, named TpTtba-COFs, were synthesized, and they were employed as adsorbents for the extraction and detection of three bisphenols (BPs)-BP A (BPA), BP B (BPB), and BP S (BPS)-in water. Using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (Tapt) and 1,3,5-tris(4-aminophenyl)benzene (Tapb) ligands as substitutes for Ttba, nitrogen-rich triazine unit-based COFs with a smaller pore size and nitrogen-poor triazine unit-based COFs, named TpTapt-COFs and TpTapb-COFs, respectively, were also prepared for comparison. The adsorption performances of the three COF adsorbents with regard to the three BPs were tested.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran.
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Westlake University, School of Engineering, 18 Shilongshan Road, 310024, Hangzhou, CHINA.
The Friedel-Crafts reaction has been extensively applied to the preparation of various porous organic polymers because of its simple operation and abundant building blocks. However, due to its poor reversibility and excessive random reactive sites, the synthesis of crystalline organic polymers/frameworks by Friedel-Crafts reaction has never been realized so far. Herein, we develop a molecular confined Friedel-Crafts reaction strategy to achieve rapid preparation (within only 30 minutes) of highly crystalline covalent triazine frameworks (CTFs) with tailorable functionality for the first time.
View Article and Find Full Text PDFChem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology Beijing, School of Chemistry and Biological Engineering, CHINA.
Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!