SARS-CoV-2 spike (S) envelope glycoprotein constitutes the main determinant of virus entry and the target of host immune response, thus being of great interest for antiviral research. It is constituted of S1 and S2 subunits, which are involved in ACE2 receptor binding and fusion between the viral envelope and host cell membrane, respectively. Induction of the fusion process requires S cleavage at the S1-S2 junction and the S2' site located upstream of the fusion peptide. Interestingly, the SARS-CoV-2 spike harbors a 4-residue insertion at the S1-S2 junction that is absent in its closest relatives and constitutes a polybasic motif recognized by furin-like proteases. In addition, the S2' site is characterized by the presence of conserved basic residues. Here, we sought to determine the importance of the furin cleavage site (FCS) and the S2' basic residues for S-mediated entry functions. We determined the impact of mutations introduced at these sites on S processing, fusogenic activity, and its ability to mediate entry in different cellular backgrounds. Strikingly, mutation phenotypes were highly dependent on the host cell background. We confirmed that although the FCS was not absolutely required for virus entry, it contributed to extending the fusogenic potential of S. Cleavage site mutations, as well as inhibition of furin protease activity, affected the cell surface expression of S in a host cell-dependent manner. Finally, inhibition of furin activity differentially affected SARS-CoV-2 virus infectivity in the tested host cells, thereby confirming the host cell-dependent effect of spike processing for the viral life cycle. SARS-CoV-2 is responsible for the current global pandemic that has resulted in several million deaths. As the key determinant of virus entry into host cells and the main target of host immune response, the spike glycoprotein constitutes an attractive target for therapeutics development. Entry functions of spike rely on its processing at two sites by host cell proteases. While SARS-CoV-2 spike differs from its closest relatives by the insertion of a basic furin cleavage motif at the first site, it harbors conserved basic residues at the second cleavage site. Characterization of the importance of the basic sequences present at the two cleavage sites revealed that they were influencing spike processing, intracellular localization, induction of fusion, and entry in a host cell-dependent manner. Thus, our results revealed a high heterogeneity in spike sequence requirement for entry functions in the different host cells, in agreement with the high adaptability of the SARS-CoV-2 virus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278140 | PMC |
http://dx.doi.org/10.1128/jvi.00474-22 | DOI Listing |
Microbiol Spectr
January 2025
Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India.
This study aimed to elucidate the complexity of the humoral immune response in COVID-19 patients with varying disease trajectories using a SARS-CoV-2 whole proteome peptide microarray chip. The microarray, containing 5347 peptides spanning the entire SARS-CoV-2 proteome and key variants of concern, was used to analyze IgG responses in 10 severe-to-recovered, 9 nonsevere-to-severe cases, and 10 control case (5 pre-pandemic and 5 SARS-CoV-2-negative) plasma samples. We identified 1151 IgG-reactive peptides corresponding to 647 epitopes, with 207 peptides being cross-reactive across 124 epitopes.
View Article and Find Full Text PDFLife Med
August 2024
Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China.
The immune responses following SARS-CoV-2 infection in children are still under investigation. While coronavirus disease 2019 (COVID-19) is usually mild in the paediatric population, some children develop severe clinical manifestations or multisystem inflammatory syndrome in children (MIS-C) after infection. MIS-C, typically emerging 2-6 weeks after SARS-CoV-2 exposure, is characterized by a hyperinflammatory response affecting multiple organs.
View Article and Find Full Text PDFOpen Forum Infect Dis
January 2025
Global Tuberculosis Program, William T. Shearer Center for Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.
Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).
J Inflamm Res
January 2025
Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.
Objective: To evaluate the effects of Fu Tu Sheng Jin Rehabilitation Formula (FTSJRF) on airway inflammation, mucus secretion, and immunoreaction in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-induced mouse model.
Methods: Forty-two mice were randomly divided into seven groups: normal, D1, D3, D10, D10H, D10M and D10L, according to the days of modeling and different dosages of FTSJRF. D1, D3, D10, D10H, D10M and D10L group mice were intratracheally administered with 15 µg SARS-CoV-2 spike protein; mice in the D10H, D10M, and D10L groups were intragastrically administered FTSJRF (46, 23 and 11.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!