The unipolar/bipolar pacing mode of pacemaker is related to its circuit impedance, which affects the battery life. In this study, the experiment scheme of pacemaker circuit impedance test was constructed. The human blood environment was simulated by NaCl solution, and the experimental environment temperature was controlled by water bath. The results of experiments showed that under the experimental conditions similar to clinical human parameters, the difference between the circuit impedance of bipolar mode and unipolar mode is 120~200 Ω. The results of the experiment confirmed that the circuit impedance of bipolar circuit was larger than that of unipolar mode, which was found in clinical practice. The results of this study have reference value to the optimization of pacing mode and the reduction of pacemaker power consumption.

Download full-text PDF

Source
http://dx.doi.org/10.3969/j.issn.1671-7104.2022.03.001DOI Listing

Publication Analysis

Top Keywords

circuit impedance
16
pacing mode
12
unipolar/bipolar pacing
8
pacemaker circuit
8
impedance bipolar
8
unipolar mode
8
mode
6
circuit
5
[study impedance
4
impedance implantable
4

Similar Publications

High dielectric constants with less dielectric loss composites is highly demandable for technological advancements across various fields, including energy storage, sensing, and telecommunications. Their significance lies in their ability to enhance the performance and efficiency of a wide range of devices and systems. In this work, the dielectric performance of graphene oxide (GO) reinforced plasticized starch (PS) nanocomposites (PS/GO) for different concentrations of GO nanofiller was studied.

View Article and Find Full Text PDF

A 35 nV/√Hz Analog Front-End Circuit with Adjustable Bandwidth and Gain in UMC 40 nm CMOS for Biopotential Signal Acquisition.

Sensors (Basel)

December 2024

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

This paper presents a 35 nV/√Hz analog front-end (AFE) circuitdesigned in the UMC 40 nm CMOS technology for the acquisition of biopotential signal. The proposed AFE consists of a capacitive-coupled instrumentation amplifier (CCIA) and a combination of a programmable gain amplifier (PGA) and a low-pass filter (LPF). The CCIA includes a DC servo loop (DSL) to eliminate electrode DC offset (EDO) and a ripple rejection loop (RRL) with self-zeroing technology to suppress high-frequency ripples caused by the chopper.

View Article and Find Full Text PDF

The nanosecond pulsed fibre laser (NsPFL) treatment is extensively employed to distinguish hospital surgical instruments (micro-surgical forceps, surgical blades, orthopaedic drills, and high-precision laparoscopic tools), which are generally composed of stainless steel. Nevertheless, if the laser parameters are not properly optimised, this process may unintentionally provoke corrosion. Maintaining the structural integrity of these materials is essential for ensuring patient safety and minimising long-term costs.

View Article and Find Full Text PDF

The simulation of ideal and non-ideal conditions using the SCAPS-1D simulator for novel structure Ag/FTO/CuBiO/GQD/Au was done for the first time. The recombination of charge carriers in CuBiO is an inherent problem due to very low hole mobility and polaron transport in the valence band. The in-depth analysis of the simulation result revealed that Graphene Quantum Dots (GQDs) can act as an appropriate hole transport layer (HTL) and can enhance hole transportation.

View Article and Find Full Text PDF

This scoping review summarizes two emerging electrical impedance technologies: electrical impedance myography (EIM) and electrical impedance tomography (EIT). These methods involve injecting a current into tissue and recording the response at different frequencies to understand tissue properties. The review discusses basic methods and trends, particularly the use of electrodes: EIM uses electrodes for either injection or recording, while EIT uses them for both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!