Aims: The purpose of this study was to explore a simple and effective method of preparing human acellular amniotic membrane (HAAM) scaffolds, and explore the effect of HAAM scaffolds with juvenile cartilage fragments (JCFs) on osteochondral defects.
Methods: HAAM scaffolds were constructed via trypsinization from fresh human amniotic membrane (HAM). The characteristics of the HAAM scaffolds were evaluated by haematoxylin and eosin (H&E) staining, picrosirius red staining, type II collagen immunostaining, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Human amniotic mesenchymal stem cells (hAMSCs) were isolated, and stemness was verified by multilineage differentiation. Then, third-generation (P3) hAMSCs were seeded on the HAAM scaffolds, and phalloidin staining and SEM were used to detect the growth of hAMSCs on the HAAM scaffolds. Osteochondral defects (diameter: 3.5 mm; depth: 3 mm) were created in the right patellar grooves of 20 New Zealand White rabbits. The rabbits were randomly divided into four groups: the control group (n = 5), the HAAM scaffolds group (n = 5), the JCFs group (n = 5), and the HAAM + JCFs group (n = 5). Macroscopic and histological assessments of the regenerated tissue were evaluated to validate the treatment results at 12 weeks.
Results: In vitro, the HAAM scaffolds had a network structure and possessed abundant collagen. The HAAM scaffolds had good cytocompatibility, and hAMSCs grew well on the HAAM scaffolds. In vivo, the macroscopic scores of the HAAM + JCFs group were significantly higher than those of the other groups. In addition, histological assessments demonstrated that large amounts of hyaline-like cartilage formed in the osteochondral defects in the HAAM + JCFs group. Integration with surrounding normal cartilage and regeneration of subchondral bone in the HAAM + JCFs group were better than those in the other groups.
Conclusion: HAAM scaffolds combined with JCFs promote the regenerative repair of osteochondral defects. Cite this article: 2022;11(6):349-361.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233407 | PMC |
http://dx.doi.org/10.1302/2046-3758.116.BJR-2021-0490.R1 | DOI Listing |
Biomed Eng Online
November 2024
Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital, Beijing, 100037, China.
Background: Vascular transplantation is an effective treatment for severe vascular lesions. The design of the bioactive and mechanical properties of small-caliber vascular grafts is critical for their application in tissue engineering. In this study, we sought to develope a small-caliber vascular graft by electrospinning a mixture of a human acellular amniotic membrane (HAAM) and polycaprolactone (PCL).
View Article and Find Full Text PDFIran J Basic Med Sci
January 2024
Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
Objectives: The skin serves as the main defense barrier, protecting against injuries, and preventing infection and water loss. Consequently, wound healing and skin regeneration are crucial aspects of wound management. A novel hydrogel scaffold was developed by incorporating carboxymethyl cellulose (CMC) and gelatin (Gel) hydrogels cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) containing Sphingosine 1-phosphate (S1P).
View Article and Find Full Text PDFInt J Mol Sci
April 2024
Department of Dental Biomaterials, College of Dentistry, Yonsei University, Seoul 03722, Republic of Korea.
The reunion and restoration of large segmental bone defects pose significant clinical challenges. Conventional strategies primarily involve the combination of bone scaffolds with seeded cells and/or growth factors to regulate osteogenesis and angiogenesis. However, these therapies face inherent issues related to immunogenicity, tumorigenesis, bioactivity, and off-the-shelf transplantation.
View Article and Find Full Text PDFBMC Oral Health
March 2024
Fujian Key Laboratory of Oral Diseases, Fujian Medical University, Fujian, 350000, China.
Objective: The objective of this study was to assess the characterization of human acellular amniotic membrane (HAAM) using various decellularization methods and their impact on the proliferation and differentiation of human dental pulp stem cells (DPSCs). The goal was to identify scaffold materials that are better suited for pulp regeneration.
Methods: Six different decellularization methods were used to generate the amniotic membranes.
Cell Transplant
December 2023
Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.
Asherman's syndrome is an endometrial regeneration disorder resulting from injury to the endometrial basal layer, causing the formation of scar tissue in the uterus and cervix. This usually leads to uterine infertility, menstrual disorders, and placental abnormalities. While stem cell therapy has shown extensive progress in repairing the damaged endometrium and preventing intrauterine adhesion, issues of low engraftment rates, rapid senescence, and the risk of tumorigenesis remain to be resolved for efficient and effective application of this technology in endometrial repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!