Naringin Promotes Osteogenic/Odontogenic Differentiation of Dental Pulp Stem Cells via Wnt/-Catenin.

Evid Based Complement Alternat Med

The Key Laboratory of Oral Biomedicine, Nanchang City, Jiangxi Province 330006, China.

Published: May 2022

Purpose: This investigation intended to unravel the effect and mechanism of naringin on the proliferation and osteogenic differentiation of human dental pulp stem cells (hDPSCs).

Methods: hDPSCs were induced to differentiate, and the degree of cell differentiation was observed by alizarin red staining, Oil Red O staining, and Alcian blue staining. hDPSCs were treated with 0, 20, 40, and 80 mol/L naringin for 48 h, respectively. The proliferation rate and chemotaxis of the cells were measured by MTT and transwell assay, alkaline phosphatase (ALP) activity and osteogenic differentiation degree by ALP staining and alizarin red staining, and gene expression of osteogenic markers by qRT-PCR. Additionally, western blot was performed to test the levels of Wnt/-catenin signaling-related proteins in hDPSCs.

Results: The isolated hDPSCs with spindle-shaped morphology had good differentiation capability. Further experiments confirmed naringin-caused increases in the proliferation rate and migration ability of hDPSCs. In addition, compared with the control group, naringin-treated cells had strong ALP activity and ossification levels and higher expression of Runx2, OPN, DSPP, and DMP1. The western blot results showed that naringin significantly activated Wnt/-catenin signaling in hDPSCs.

Conclusion: Taken together, naringin enhances the proliferation, migration, and osteogenesis of hDPSCs through stimulating Wnt/-catenin signaling pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168102PMC
http://dx.doi.org/10.1155/2022/4505471DOI Listing

Publication Analysis

Top Keywords

red staining
12
dental pulp
8
pulp stem
8
stem cells
8
osteogenic differentiation
8
alizarin red
8
proliferation rate
8
alp activity
8
western blot
8
wnt/-catenin signaling
8

Similar Publications

Tamoxifen is an inhibitor of estrogen receptors and was originally developed for breast cancer therapy. Besides, tamoxifen is widely used for Cre-estrogen receptor-mediated conditional knockout in transgenic mice. However, we found that the 3-month feeding of 0.

View Article and Find Full Text PDF

Background: Kidney transplant (KT) recipients at intermediate risk for cytomegalovirus (CMV) infection constitute a potential target for individualized prevention strategies informed by the CMV-specific cell-mediated immunity (CMV-CMI). The optimal method for the functional assessment of CMV-CMI in this group remains unclear.

Methods: We included 74 CMV-seropositive KT recipients that did not receive T-cell-depleting induction and were managed by preemptive therapy.

View Article and Find Full Text PDF

Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.

View Article and Find Full Text PDF

Berberine Improves Glucose and Lipid Metabolism in Obese Mice through the Reduction of IRE1/GSK-3β Axis-Mediated Inflammation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, No. 130 Renmin Middle Road, Jiangyin City, Jiangsu Province, 214413, China.

Introduction: Berberine (BBR) has the characteristics of repressing hyperglycemia, obesity, and inflammation, as well as improving insulin resistance. However, the underlying mechanism remains to be fully understood. This study explores whether BBR regulates inositol requiring enzyme 1 (IRE1)/glycogen synthase kinase 3 beta (GSK-3β) axis to resist obesity-associated inflammation, thereby improving glucolipid metabolism disorders.

View Article and Find Full Text PDF

Dnmt3a-mediated DNA Methylation Regulates P. gingivalis-suppressed Cementoblast Mineralization Partially Via Mitochondria-dependent Apoptosis Pathway.

Inflammation

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.

Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!