Plants including , , and contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168095PMC
http://dx.doi.org/10.1155/2022/1035441DOI Listing

Publication Analysis

Top Keywords

preclinical studies
8
diosgenin updated
4
updated pharmacological
4
pharmacological review
4
review therapeutic
4
therapeutic perspectives
4
perspectives plants
4
plants including
4
including lot
4
lot diosgenin
4

Similar Publications

Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.

View Article and Find Full Text PDF

Cannabinoid-based Pharmacology for the Management of Substance Use Disorders.

Curr Top Behav Neurosci

January 2025

Department of Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, USA.

In the last two decades, the endocannabinoid system has emerged as a crucial modulator of motivation and emotional processing. Due to its widespread neuroanatomical distribution and characteristic retrograde signaling nature, cannabinoid type I receptors and their endogenous ligands finely orchestrate somatic and axon terminal activity of dopamine neurons. Owing to these unique features, this signaling system is a promising pharmacological target to ameliorate dopamine-mediated drug-seeking behaviors while circumventing the adverse side effects of, for instance, dopaminergic antagonists.

View Article and Find Full Text PDF

Indocyanine green dyed gauze-guided minimum invasive surgery for anatomical landmarks and preventing gauze remnants: a pilot study.

Langenbecks Arch Surg

January 2025

Department of Chemical Science & Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan.

Purpose: We aimed to develop a novel fluorescent surgical gauze dyed with indocyanine green (ICG) to guide surgeons to the target anatomical destination during surgery for real-time navigation and to prevent gauze remnants after surgery.

Methods: Surgical gauze was dyed with an aqueous solution of ICG (5.0 × 10 mol L for Steraze, 1.

View Article and Find Full Text PDF

Platelet-derived extracellular vesicles (PEVs) are rich in growth factors and have significant potential for facilitating tissue repair and regeneration. Therefore, we conducted this meta-analysis to assess the efficacy of PEVs in treating diabetic wounds. To assess the efficacy and safety of PEVs in treating diabetic wounds, we conducted a systematic review of several databases and performed a meta-analysis using a random effects model.

View Article and Find Full Text PDF

Biomarkers in Ataxia-Telangiectasia: a Systematic Review.

J Neurol

January 2025

Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.

Ataxia-Telangiectasia (A-T) is a very rare multisystem disease of DNA repair, associated with progressive disabling neurological symptoms, respiratory failure, immunodeficiency and cancer predisposition, leading to premature death. There are no curative treatments available for A-T but clinical trials have begun. A major limiting factor in effectively evaluating therapies for A-T is the lack of suitable outcome measures and biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!