To observe the clinical efficacy of early enteral nutrition application in critically ill neurosurgical patients, in this paper, we have developed a prediction model for enteral nutrition support in neurosurgical intensive care patients which is primarily based on an integrated learning algorithm. Additionally, we have compared the prediction performance of each model. The patients were divided into control and combined treatment groups according to the random number table method, and 175 patients in each group were treated with a parenteral method and early enteral nutrition support, respectively. A reentry ICU prediction model based on the integrated learning method random forest, adaptive boosting (AdaBoost), and gradient boosting decision tree (GBDT) was developed, and the prediction performance of integrated learning and logistic regression was compared. The average sensitivity, positive predictive value, negative predictive value, false-positive rate, false-negative rate, area under the receiver operating characteristic curve (AUROC), and Brier score after fivefold cross-validation were used to evaluate model effects, and the best performance model based on the top 10 predictor variables in order of importance was given. Among all models, GBDT (AUROC = 0.858) was better than random forest (AUROC = 0.827) and slightly better than AdaBoost (AUROC = 0.851). The GBDT algorithm gave a higher ranking of importance for variables such as mean arterial pressure, systolic blood pressure, diastolic blood pressure, heart rate, urine volume, and blood creatinine and relatively poorer cardiovascular and renal function in neurosurgical intensive care patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170414PMC
http://dx.doi.org/10.1155/2022/4061043DOI Listing

Publication Analysis

Top Keywords

integrated learning
16
enteral nutrition
16
nutrition support
12
neurosurgical intensive
12
intensive care
12
care patients
12
support neurosurgical
8
early enteral
8
developed prediction
8
prediction model
8

Similar Publications

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

Multi-class Classification of Retinal Eye Diseases from Ophthalmoscopy Images Using Transfer Learning-Based Vision Transformers.

J Imaging Inform Med

January 2025

College of Engineering, Department of Computer Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey.

This study explores a transfer learning approach with vision transformers (ViTs) and convolutional neural networks (CNNs) for classifying retinal diseases, specifically diabetic retinopathy, glaucoma, and cataracts, from ophthalmoscopy images. Using a balanced subset of 4217 images and ophthalmology-specific pretrained ViT backbones, this method demonstrates significant improvements in classification accuracy, offering potential for broader applications in medical imaging. Glaucoma, diabetic retinopathy, and cataracts are common eye diseases that can cause vision loss if not treated.

View Article and Find Full Text PDF

Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.

View Article and Find Full Text PDF

Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.

View Article and Find Full Text PDF

The trajectory of crime: Integrating mouse-tracking into concealed memory detection.

Behav Res Methods

January 2025

Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, 999078, Macau, China.

The autobiographical implicit association test (aIAT) is an approach of memory detection that can be used to identify true autobiographical memories. This study incorporates mouse-tracking (MT) into aIAT, which offers a more robust technique of memory detection. Participants were assigned to mock crime and then performed the aIAT with MT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!