Lower urinary tract symptoms (LUTS) involve benign prostatic hyperplasia (BPH) and overactive bladder (OAB). Standard-of-care medical treatment includes α-blockers and antimuscarinics for reduction of prostate and detrusor smooth muscle tone, respectively, and 5α-reductase inhibitors (5-ARI) to prevent prostate growth. Current medications are marked by high discontinuation rates due to unfavourable balance between efficacy and treatment-limiting side effects, ranging from dry mouth for antimuscarinics to cardiovascular dysregulation and a tendency to fall for α-blockers, which results from hypotension, due to vasorelaxation. Agonist-induced smooth muscle contractions are caused by activation of receptor-coupled G-proteins. However, little is known about receptor- and organ-specific differences in coupling to G-proteins. With YM-254890, a small molecule inhibitor with presumed specificity for Gα became recently available. Here, we investigated effects of YM-254890 on prostate, bladder and vascular smooth muscle contraction, and on growth-related functions in prostate stromal cells. Contractions of human prostate and detrusor tissues, porcine renal and coronary arteries were induced in an organ bath. Proliferation (EdU assay), growth (colony formation), apoptosis and cell death (flow cytometry), viability (CCK-8) and actin organization (phalloidin staining) were studied in cultured human prostate stromal cells (WPMY-1). Contractions by α-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were nearly completely inhibited by YM-254890 (30 nM) in prostate tissues. Contractions by cholinergic agonists, U46619, endothelin-1, and neurogenic contractions were only partly inhibited in detrusor tissues. Contractions by α-adrenergic agonists, U46619, endothelin-1, and neurogenic contractions were strongly, but not fully inhibited in renal arteries. Contractions by cholinergic agonists were completely, but by U46619 and endothelin-1 only strongly inhibited, and neurogenic contractions reduced by half in coronary arteries. YM-254890 had no effect on agonist-independent contractions induced by highmolar (80 mM) potassium chloride (KCl). Neurogenic detrusor contractions were fully sensitive to tetrodotoxin. In WPMY-1 cells, YM-254890 caused breakdown of actin polymerization and organization, and obvious, but clearly limited decreases of proliferation rate, colony formation and viability, and slightly increased apoptosis. Intracellular post-receptor signaling pathways are shared by Gα-coupled contractile receptors in multiple smooth muscle-rich organs, but to different extent. While inhibition of Gα causes actin breakdown, anti-proliferative effects were detectable but clearly limited. Together this may aid in developing future pharmaceutical targets for LUTS and antihypertensive medication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168773PMC
http://dx.doi.org/10.3389/fphys.2022.884057DOI Listing

Publication Analysis

Top Keywords

smooth muscle
16
u46619 endothelin-1
16
neurogenic contractions
16
human prostate
12
coronary arteries
12
prostate stromal
12
stromal cells
12
contractions
12
agonists u46619
12
endothelin-1 neurogenic
12

Similar Publications

Background: Gallstone formation is a common digestive ailment, with unclear mechanisms underlying its development. Dysfunction of the gallbladder smooth muscle (GSM) may play a crucial role, particularly with a high-fat diet (HFD). This study aimed to investigate the effects of an HFD on GSM and assess how it alters contractility through changes in the extracellular matrix (ECM).

View Article and Find Full Text PDF

Sinonasal leiomyoma is an exceptionally rare neoplasm arising from smooth muscle cells within the sinonasal tract. This abstract presents a case study of a 43-year-old male patient diagnosed with sinonasal leiomyoma, a distinctive and challenging entity in otolaryngology. The patient presented with a complex clinical history, including a 2-year interval between initial evaluation and definitive diagnosis.

View Article and Find Full Text PDF

Background: The ciliary muscle is known to play a part in presbyopia, but the mechanism has not received a comprehensive review, which this study aims to achieve. We examined relevant articles published from 1975 through 2022 that explored various properties of the muscle and related tissues in humans and rhesus monkeys. These properties include geometry, elasticity, rigidity, and composition, and were studied using a range of imaging technologies, computer models, and surgical methods.

View Article and Find Full Text PDF

Contractile responses of engineered human myometrium to prostaglandins and inflammatory cytokines.

APL Bioeng

December 2024

Laboratory for Living Systems Engineering, Alfred E. Mann Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, California, 90089, USA.

Preterm labor is a prevalent public health problem and occurs when the myometrium, the smooth muscle layer of the uterus, begins contracting before the fetus reaches full term. Abnormal contractions of the myometrium also underlie painful menstrual cramps, known as dysmenorrhea. Both disorders have been associated with increased production of prostaglandins and cytokines, yet the functional impacts of inflammatory mediators on the contractility of human myometrium have not been fully established, in part due to a lack of effective model systems.

View Article and Find Full Text PDF

Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats.

Neurochem Int

December 2024

Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien, Taiwan 970. Electronic address:

Previous studies have shown that celecoxib or NSAID may paradoxically induce cyclooxygenase-2 (COX-2) expression and trigger inflammation-like responses in airway smooth muscle cells and renal mesangial cells. Despite the extensive research on celecoxib, its atypical biological effect on the induction of COX-2 in astroglial cells within the central nervous system (CNS) remains unexplored. In the present study, we investigated the impact of celecoxib on COX-2 and Glial Fibrillary Acidic Protein (GFAP) expression and explored the mechanisms underlying celecoxib-regulated COX-2 expression in cortical astrocytes of rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!