Background: New genes continuously emerge from non-coding DNA or by diverging from existing genes, but most of them are rapidly lost and only a few become fixed within the population. We hypothesized that young genes are subject to transcriptional and post-transcriptional regulation to limit their expression and minimize their exposure to purifying selection.
Results: We performed a protein-based homology search across the tree of life to determine the evolutionary age of protein-coding genes present in the rice genome. We found that young genes in rice have relatively low expression levels, which can be attributed to distal enhancers, and closed chromatin conformation at their transcription start sites (TSS). The chromatin in TSS regions can be re-modeled in response to abiotic stress, indicating conditional expression of young genes. Furthermore, transcripts of young genes in Arabidopsis tend to be targeted by nonsense-mediated RNA decay, presenting another layer of regulation limiting their expression.
Conclusions: These data suggest that transcriptional and post-transcriptional mechanisms contribute to the conditional expression of young genes, which may alleviate purging selection while providing an opportunity for phenotypic exposure and functionalization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178820 | PMC |
http://dx.doi.org/10.1186/s12915-022-01339-7 | DOI Listing |
Appl Microbiol Biotechnol
December 2024
Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.
Background: Substance use disorders are multifaceted conditions influenced by both genetic and environmental factors. Serotonergic pathways are known to be involved in substance use disorder susceptibility, with genetic markers within serotonin receptor genes identified as potential risk factors.
Methods: To further explore this relationship, we conducted a study to investigate the association between several polymorphisms in five serotonin receptor genes (, , ) and substance use disorders (SUD) in Jordanian males by sequencing genotypes in 496 SUD patients and 496 healthy controls.
Eur J Neurol
January 2025
School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
Background: The regulatory role of the apolipoprotein E (APOE) ε4 allele in the clinical manifestations of spinocerebellar ataxia type 3 (SCA3) remains unclear. This study aimed to evaluate the impact of the APOE ε4 allele on cognitive and motor functions in SCA3 patients.
Methods: This study included 281 unrelated SCA3 patients and 182 controls.
Cell Prolif
December 2024
Department of Geriatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!