In the gut ecosystem, microorganisms regulate group behaviour and interplay with the host via a molecular system called quorum sensing (QS). The QS molecule 3-oxo-C12:2-HSL, first identified in human gut microbiota, exerts anti-inflammatory effects and could play a role in inflammatory bowel diseases where dysbiosis has been described. Our aim was to identify which signalling pathways are involved in this effect. We observed that 3-oxo-C12:2-HSL decreases expression of pro-inflammatory cytokines such as Interleukine-1β (- 35%) and Tumor Necrosis Factor-α (TNFα) (- 40%) by stimulated immune RAW264.7 cells and decreased TNF secretion by stimulated PBMC in a dose-dependent manner, between 25 to 100 µM. Transcriptomic analysis of RAW264.7 cells exposed to 3-oxo-C12:2-HSL, in a pro-inflammatory context, highlighted JAK-STAT, NF-κB and TFN signalling pathways and we confirmed that 3-oxo-C12:2-HSL inhibited JAK1 and STAT1 phosphorylation. We also showed through a screening assay that 3-oxo-C12:2-HSL interacted with several human bitter taste receptors. Its anti-inflammatory effect involved TAS2R38 as shown by pharmacologic inhibition and led to an increase in intracellular calcium levels. We thus unravelled the involvement of several cellular pathways in the anti-inflammatory effects exerted by the QS molecule 3-oxo-C12:2-HSL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177545PMC
http://dx.doi.org/10.1038/s41598-022-13451-3DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
sensing molecule
8
bitter taste
8
taste receptors
8
molecule 3-oxo-c122-hsl
8
anti-inflammatory effects
8
signalling pathways
8
raw2647 cells
8
3-oxo-c122-hsl
7
3-oxo-c122-hsl quorum
4

Similar Publications

is one of the opportunistic pathogens that may cause serious health problems and can produce several virulence factors, which are responsible for various infections, particularly in immunocompromised patients. They are responsible for producing infections on indwelling medical devices by attaching on to them and forming a biofilm. Antibiofilm, antivirulence, and gene expression studies of biofilm treated with esters of flavonols were evaluated.

View Article and Find Full Text PDF

New tools to monitor infection and biofilms in .

Front Cell Infect Microbiol

December 2024

School of Biosciences, University of Kent, Canterbury, United Kingdom.

Introduction: Antimicrobial resistance is a growing health problem. Pseudomonas aeruginosa is a pathogen of major concern because of its multidrug resistance and global threat, especially in health-care settings. The pathogenesis and drug resistance of depends on its ability to form biofilms, making infections chronic and untreatable as the biofilm protects against antibiotics and host immunity.

View Article and Find Full Text PDF

Potential roles of quorum quenching in microbial aggregates during wastewater treatment.

Bioresour Technol

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China. Electronic address:

Quorum sensing-regulated microbial behaviors often negatively impact wastewater treatment, leading to issues such as biofouling in membrane bioreactors, filamentous bulking, and resistance gene transfer. Quorum quenching, which counteracts quorum sensing, offers a promising strategy to mitigate these problems. This review aims to highlight overlooked perspectives for its application in microbial aggregates during wastewater treatment.

View Article and Find Full Text PDF

Quorum sensing signals of the grapevine crown gall bacterium, sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones.

PeerJ

December 2024

The Thomas H. Gosnell School of Life Sciences, Biotechnology and Molecular Bioscience Program, College of Science, Rochester Institute of Technology, Rochester, New York, United States.

Background: A grapevine crown gall tumor strain, sp. strain Rr2-17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr2-17, suggesting that it may encode for a AHL synthase with broad substrate range, pending functional validation.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) poses a significant global threat to public health systems, rendering antibiotics ineffective in treating infectious diseases. Combined use of bio compounds, including bacteriophages and plant extracts, is an attractive approach to controlling antibiotic resistance. In this study, the combination of phage cocktail (Isf-Pm1 and Isf-Pm2) and crude extract (AME) was investigated in controlling biofilm-forming multi-drug resistant isolates, and a phantom bladder model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!