Recently, cognitive neuroscientists have increasingly studied the brain responses to narratives. At the same time, we are witnessing exciting developments in natural language processing where large-scale neural network models can be used to instantiate cognitive hypotheses in narrative processing. Yet, they learn from text alone and we lack ways of incorporating biological constraints during training. To mitigate this gap, we provide a narrative comprehension magnetoencephalography (MEG) data resource that can be used to train neural network models directly on brain data. We recorded from 3 participants, 10 separate recording hour-long sessions each, while they listened to audiobooks in English. After story listening, participants answered short questions about their experience. To minimize head movement, the participants wore MEG-compatible head casts, which immobilized their head position during recording. We report a basic evoked-response analysis showing that the responses accurately localize to primary auditory areas. The responses are robust and conserved across 10 sessions for every participant. We also provide usage notes and briefly outline possible future uses of the resource.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9177538 | PMC |
http://dx.doi.org/10.1038/s41597-022-01382-7 | DOI Listing |
Brain Cogn
January 2025
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China. Electronic address:
Human experiences are inherently shaped by individual perspectives, leading to diverse interpretations of the same events. However, shared activities, such as communal film watching or sports viewing, underscore the dual nature of these experiences: collective joy arises through social interactions, while individual emotional responses are influenced by personal preferences. The neural mechanisms underlying this interplay between shared and idiosyncratic experiences, particularly in the context of reward processing, remain insufficiently explored.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.
Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.
View Article and Find Full Text PDFSci Rep
January 2025
University of Ghana, P.O. Box 134, Legon-Accra, Ghana.
Sentiment analysis has become a difficult and important task in the current world. Because of several features of data, including abbreviations, length of tweet, and spelling error, there should be some other non-conventional methods to achieve the accurate results and overcome the current issue. In other words, because of those issues, conventional approaches cannot perform well and accomplish results with high efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFSci Rep
January 2025
College of Computer and Information Engineering, Nanjing Tech University, Nanjing, 211800, China.
Graph data is essential for modeling complex relationships among entities. Graph Neural Networks (GNNs) have demonstrated effectiveness in processing low-order undirected graph data; however, in complex directed graphs, relationships between nodes extend beyond first-order connections and encompass higher-order relationships. Additionally, the asymmetry introduced by edge directionality further complicates node interactions, presenting greater challenges for extracting node information.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!