Catalysts play a pivotal role in achieving the global need for food and energy. In this context, porous organic polymers (POPs) with high surface area, robust architecture, tunable pore size, and chemical functionalities have emerged as promising testbeds for heterogeneous catalysis. Amorphous POPs having functionalized interconnected hierarchical porous structures activate a diverse range of substrates through covalent/non-covalent interactions or act as a host matrix to encapsulate catalytically active metal centers. On the other hand, conjugated POPs have been explored for photoinduced chemical transformations. In this personal account, we have delineated the evolution of various POPs and the specific role of pores and pore functionalities in heterogeneous catalysis. Subsequently, we retrospect our journey over the last ten years towards designing and fabricating amorphous POPs for heterogeneous catalysis, specifically photocatalytic reactive oxygen species (ROS)-mediated organic transformations and nonredox chemical fixation of CO . We have also outlined some of the future avenues of POPs and POP-based hybrid materials for diverse catalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202200071 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.
The microenvironment is recognized to be as crucial as active sites in heterogeneous catalysis. It was found that the catalytic activity of a set of chemical reactions can be significantly influenced by the confined space of carbon nanotubes (CNTs), with some reactions showing superior activity, while others experience a negative impact. The rational design of confined catalysis must rely on the accurate insights of confined microenvironment.
View Article and Find Full Text PDFInsulin degrading enzyme (IDE) is a dimeric 110 kDa M16A zinc metalloprotease that degrades amyloidogenic peptides diverse in shape and sequence, including insulin, amylin, and amyloid-β, to prevent toxic amyloid fibril formation. IDE has a hollow catalytic chamber formed by four homologous subdomains organized into two ∼55 kDa N- and C-domains (IDE-N and IDE-C, respectively), in which peptides bind, unfold, and are repositioned for proteolysis. IDE is known to transition between a closed state, poised for catalysis, and an open state, able to release cleavage products and bind new substrate.
View Article and Find Full Text PDFAtomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.
View Article and Find Full Text PDFChem Sci
December 2024
College of Materials Science and Engineering, Fuzhou University New Campus 350108 China
Atomically precise metal nanoclusters (NCs) have recently been recognized as an emerging sector of metal nanomaterials but suffer from light-induced poor stability, giving rise to the detrimental self-transformation into metal nanocrystals (NYs), losing the photosensitization effect and ultimately retarding their widespread applications in photoredox catalysis. Are metal NCs definitely superior to metal NYs in heterogeneous photocatalysis in terms of structural merits? To unlock this mystery, herein, we conceptually demonstrate how to rationally manipulate the instability of metal NCs to construct high-efficiency artificial photosystems and examine how the metal NYs self-transformed from metal NCs influence charge transfer in photoredox selective organic transformation. To our surprise, the results indicate that the Schottky-type electron-trapping ability of Au NYs surpasses the photosensitization effect of glutathione (GSH)-protected Au clusters [Au(GSH) NCs] in mediating charge separation and enhancing photoactivities towards selective photoreduction of aromatic nitro compounds to amino derivatives and photocatalytic oxidation of aromatic alcohols to aldehydes under visible light irradiation.
View Article and Find Full Text PDFChem Sci
December 2024
School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!