Background Context: Therapeutic devices for spinal disorders, such as spinal fusion cages, must be able to facilitate the maintenance and rapid recovery of spinal function. Therefore, it would be advantageous that future spinal fusion cages facilitate rapid recovery of spinal function without secondary surgery to harvest autologous bone.
Purpose: This study investigated a novel spinal cage configuration that achieves in vivo mechanical integrity as a devise/bone complex by inducing bone that mimicked the sound trabecular bone, hierarchically and anisotropically structured trabeculae strengthened with a preferentially oriented extracellular matrix.
Study Design/settings: In vivo animal study.
Methods: A cage possessing an anisotropic through-pore with a grooved substrate, that we termed "honeycomb tree structure," was designed for guiding bone matrix orientation; it was manufactured using a laser beam powder bed fusion method through an additive manufacturing processes. The newly designed cages were implanted into sheep vertebral bodies for 8 and 16 weeks. An autologous bone was not installed in the newly designed cage. A pull-out test was performed to evaluate the mechanical integrity of the cage/bone interface. Additionally, the preferential orientation of bone matrix consisting of collagen and apatite was determined.
Results: The cage/host bone interface strength assessed by the maximum pull-out load for the novel cage without an autologous bone graft (3360±411 N) was significantly higher than that for the conventional cage using autologous bone (903±188 N) after only 8 weeks post-implantation.
Conclusions: These results highlight the potential of this novel cage to achieve functional fusion between the cage and host bone. Our study provides insight into the design of highly functional spinal devices based on the anisotropic nature of bone.
Clinical Significance: The sheep spine is similar to the human spine in its stress condition and trabecular bone architecture and is widely recognized as a useful model for the human spine. The present design may be useful as a new spinal device for humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2022.05.006 | DOI Listing |
Macromol Rapid Commun
December 2024
School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA.
Examining the mechanical properties of polymer thin films is crucial for high-performance applications such as displays, coatings, sensors, and thermal management. It is important to design thin film microstructures that excel in high-demand situations without compromising mechanical integrity. Here, a polymer blend of polystyrene (PS) and polyisoprene (PI) is used as a model to explore microscale deformation behavior under uniaxial mechanical testing.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Key Laboratory of Special Engine Technology, Ministry of Education, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
In the field of gun launched missile extended range rocket, the propellant grain in the rocket needs to withstand significant launch loads during their firing phase, and also bear the high pressure caused by ignition, and the impact of launch overloads and ignition shocks on the structural integrity of propellants becomes very important. So this work investigated the dynamic initiation fracture toughness of the composite modified double-base (CMDB) propellant by both experiments and numerical simulations. The dynamic mechanical properties test of the cracked straight through flattened Brazilian disc (CSTFBD) specimens were conducted using a modified Split Hopkinson pressure bar (SHPB).
View Article and Find Full Text PDFSci Rep
December 2024
Mechanical and Aerospace Engineering Department, United Arab Emirates University, 15551, Al Ain, United Arab Emirates.
Fibre-reinforced polymeric composites utilized in aerospace settings, experience varying environmental conditions throughout their operational lifespan. The major factors that can have adverse effects on their long-term performance are water and temperature. The present study investigates how the determinants such as water and temperature impact the structural integrity of plain weave woven carbon/epoxy laminated composites and further categorizing them into compacted and non-compacted groups.
View Article and Find Full Text PDFSci Rep
December 2024
Marine Design and Research Institute of China, Shanghai, China.
The mechanical properties of an engineering structure can be substantially influenced by a random impact force (RIF), which may compromise the integrity and safety of the structure. Nevertheless, accurately localising the RIF applied to a structure presents a significant challenge. To address this issue, this study introduces a novel method known as the weighted reference database method (WRDM).
View Article and Find Full Text PDFBioessays
December 2024
Department of Biochemistry and Molecular Biology, Louisiana Cancer Research Center, Tulane University School of Medicine, New Orleans, Louisiana, USA.
Epithelial tissues serve as critical barriers in metazoan organisms, maintaining structural integrity and facilitating essential physiological functions. Epithelial cell polarity regulates mechanical properties, signaling, and transport, ensuring tissue organization and homeostasis. However, the barrier function is challenged by cell turnover during development and maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!