Familial primary desminopathies are usually autosomal dominantly inherited and present at the age of 20 to 40 years with progressive muscle weakness and atrophy, cardiomyopathy, and cardiac arrhythmias. Cardiac features may precede the muscular weakness. Here, we report the rare case of two siblings presenting with a desminopathy at pediatric age, due to homozygous nonsense variations (c.700G > T [p.Glu234Ter]) in DES, representing an autosomal recessive inheritance pattern. The homozygous state of these variants is expected to result in the complete absence of desmin production. Rare autosomal recessive DES variants are associated with an earlier clinical presentation (from childhood to early adulthood) and faster evolution compared with more common autosomal dominant variants. A normal resting electrocardiography (ECG) and cardiac ultrasound can be a pitfall, as seen in our patient who has extensive fibrotic scarring on cardiac magnetic resonance imaging (MRI). We recommend yearly cardiac ultrasound, yearly 24-hour Holter monitoring and 2 yearly cardiac MRI from the age of 10 years in all asymptomatic patients. Heterozygous patients usually have no or only mild complaints but, though not yet reported in autosomal recessive desminopathies, muscular complaints are possible, as seen in the father of our patients. The prognosis for these patients with desminopathy presenting in childhood is unpredictable but anticipated as poor.

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1871-3692DOI Listing

Publication Analysis

Top Keywords

autosomal recessive
12
homozygous nonsense
8
age years
8
cardiac ultrasound
8
yearly cardiac
8
cardiac
6
autosomal
5
severe form
4
form familial
4
familial desminopathy
4

Similar Publications

Coexistence of phenylketonuria and tyrosinemia type 3: challenges in the dietary management.

J Pediatr Endocrinol Metab

January 2025

Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.

Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).

View Article and Find Full Text PDF

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Fetal Tetra-Amelia Birth: A Case Report.

Case Rep Obstet Gynecol

December 2024

Department of Obstetrics and Gynecology, Jimma University School of Medicine, Jimma, Ethiopia.

Fetal limb anomaly presentation varies greatly. It can present as amelia (complete absence of skeletal part of one or more limb), meromelia (partial absence of skeletal part of one or more limb), phocomelia (only rudimentary limb formed), and minor limb disorders like polydactyly. The complete absence of the four fetal limbs is extremely rare.

View Article and Find Full Text PDF

Background: Sickle cell disease (SCD) is an autosomal recessive genetic blood disorder. It affects up to 2.6% of the Kingdom of Saudi Arabia population.

View Article and Find Full Text PDF

Rickets in children usually present with skeletal manifestations. However, they can also rarely present with extraskeletal manifestations, one of them being respiratory insufficiency. We present an unusual case of a girl in early childhood with respiratory insufficiency, which turned out to be due to the underlying vitamin D-dependent rickets (VDDR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!