Feeding probiotics like live yeast Saccharomyces cerevisiae var. boulardii (SB) in pig diets has been suggested to preserve health and reduce antibiotic use during critical periods like weaning. This study was conducted to determine whether SB added to the diet of sows during the last 2 mo of gestation and the 4 wk of lactation may contribute to support the health and performance of piglets before and after weaning through changes in sow physiology, milk composition, and fecal microbiota. Crossbred sows (n = 45) from parity 1 to 9 were allocated to two dietary treatments: Control (n = 23) and SB (n = 22). Sows in the SB group were fed the same standard gestation and then lactation diet as the Control sows but with the addition of SB at 1 × 109 colony-forming units/kg of feed. Piglets were weaned under challenging conditions consisting of mixing of litters, no pen cleaning, and a 2-h period of nonoptimal temperature exposure. Blood and feces were collected from sows on days 28 and 113 of gestation and days 6 (feces only) and 28 of lactation, and from piglets on days 6 (feces) and 28 of lactation and day 5 after weaning. Colostrum was collected during parturition and milk on day 6 of lactation. Supplementation of sow diets with SB influenced the fecal microbiota of the sows and their piglets. Five days after weaning, the alpha-diversity was lower (P < 0.05) in piglets from SB sows than in piglets from Control sows. Analysis of microbiota with partial least square discriminant analysis discriminated feces from SB sows from that of Control sows at 110 d of gestation (29.4% error rate). Piglet feces could also be discriminated according to the diet of their mother, with a better discrimination early after birth (day 6 of lactation) than after weaning (day 5 postweaning, 3.4% vs. 12.7% error rate). Five days after weaning, piglets had greater white blood cell count, plasma haptoglobin concentration, and oxidative stress than before weaning (P < 0.001). Nevertheless, SB supplementation in sow diets had no effect (P > 0.05) on most of health criteria measured in blood and growth performance of piglets during lactation and the postweaning period. Moreover, dietary supplementation of SB to sows did not elicit any changes (P > 0.05) in their reproductive performance, metabolic and health status, nor in the concentration of immunoglobulins and nutrients in colostrum and milk. In the present experimental conditions, feeding SB to sows influenced sow and piglet microbiota with no consequences on their health and performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387602 | PMC |
http://dx.doi.org/10.1093/jas/skac209 | DOI Listing |
Animals (Basel)
January 2025
Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain.
Fifty-eight litters (16 from primiparous gilts and 42 from multiparous sows) were used, with a total number of 750 piglets involved in the study. Birth weight was stratified into three groups: low (<1.02 kg; LBW), normal (1.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Sciences, University of São Paulo (USP), Campus Pirassununga, Pirassununga 13635-900, Sao Paulo, Brazil.
Modern hyperprolific sows are increasingly susceptible to health challenges. Their rapid growth rates predispose them to locomotor disorders, while high metabolic demands, reduced backfat thickness, and increased protein accretion heighten their vulnerability to heat stress and dystocia. Additionally, prolonged farrowing negatively affects the oxidative and inflammatory status of these females.
View Article and Find Full Text PDFActa Vet Scand
January 2025
Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 8, Frederiksberg C, DK-1870, Denmark.
Background: Information on indirect contacts (e.g. contact with visitors and non-porcine species on farms, shared staff and equipment, contact with trucks) is often poorly recorded even though it constitutes a risk in terms of disease transmission.
View Article and Find Full Text PDFVet Sci
January 2025
Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
This study aimed to investigate the effects of maternal glycerol monolaurate complex (GML) and antibiotic (acetylisovaleryltylosin tartrate, ATLL) supplementation during late gestation and lactation on the reproductive performance of sows and the growth performance of piglets. In total, 64 pregnant sows were randomly divided into control, antibiotic, 0.1% GML, and 0.
View Article and Find Full Text PDFVet Microbiol
January 2025
College Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive failure in sows and respiratory disease in growing pigs, leading to significant economic losses worldwide. Due to the constant mutation and recombination, PRRSV exhibits significant genetic diversity, the general detection of all PRRSV-2 and PRRSV-1 strains is thus needed. In our study, four monoclonal antibodies (mAbs) against PRRSV nucleocapsid (N) protein were generated and the precise and novel B cell epitopes (KPHF and HHTVR) were identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!