The stimulator of interferon genes (STING) protein is a cornerstone of the human immune response. Its activation by cGAMP in the presence of cytosolic DNA stimulates the production of type I interferons and inflammatory cytokines. In the human population, several STING variants exist and exhibit dramatic differences in their activity, impacting the efficiency of the host defense against infections. Understanding the molecular mechanisms of these variants opens perspectives for personalized medicine treatments against diseases such as viral infections, cancers, or autoinflammatory diseases. Through microsecond-scale molecular modeling simulations, contact analyses, and machine learning techniques, we reveal the dynamic behavior of four STING variants (wild type, G230A, R293Q, and G230A/R293Q) and rationalize the variability of efficiency observed experimentally. Our results show that the decrease in STING activity is linked to a stiffening of key structural elements of the binding cavity together with changes in the interaction patterns within the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.2c00315DOI Listing

Publication Analysis

Top Keywords

sting variants
12
stimulator interferon
8
interferon genes
8
genes sting
8
immune response
8
sting
5
fragile influence
4
influence stimulator
4
variants
4
variants pathogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!