Background: Possible modulatory effects of noninvasive brain stimulation have gained interest recently. In our study, the effect of low frequency electric fields (LF-EF) on stress-induced electrophysiological, behavioral changes and the possible involvement of serotonergic 5-HT2C receptors were investigated.
Materials And Methods: A total of eight groups including the control groups were formed by applying LF-EF with or without a 5-HT2C receptor agonist to naïve or acute stress exposed rats to demonstrate the effects of LF-EF. LF-EF administration at 10 kV/m was started 30 min before acute stress application and lasted for 1 h in total. Anxiety levels and social interaction were evaluated using the elevated plus maze test and social interaction test, respectively. Auditory evoked potentials (AEP) were recorded by using ascending loudness paradigms. Loudness dependence AEP (LDAEP) was calculated by using amplitude values to analyze serotonergic transmission. Serotonin and glucocorticoid levels were measured in the frontal cortex and hippocampus.
Results: It was observed that the applied LF-EF reduced the anxiety behavior, and attenuated the LDAEP responses in stress and/or 5-HT2C receptor agonist applied groups. In parallel, an increase in serotonin levels and a decrease in glucocorticoid levels were observed. However, LF-EF exposure was ineffective in impaired social interaction.
Conclusions: Our findings show that 10 kV/m LF-EF administration may modulate the neural network and physiological responses associated with mild acute stress. 5-HT2C receptor dependent functions are thought to play a role in the anxiolytic effect of LF-EF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553002.2022.2087929 | DOI Listing |
Geroscience
January 2025
Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
Sarcopenia, the pathological age-related loss of muscle mass and strength, contributes to physical decline, frailty, and diminished healthspan. The impact of sarcopenia is expected to rise as the aging population grows, and treatments remain limited. Therefore, novel approaches for enhancing physical function and strength in older adults are desperately needed.
View Article and Find Full Text PDFPharmacol Biochem Behav
November 2024
Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
GW117 functions as both an MT1/MT2 receptor agonist and a 5-HT2C receptor antagonist. This study aimed to investigate the anxiolytic effects of GW117 through behavioral assessments, including the open field test and novelty-suppressed feeding test (NSFT) within a chronic unpredictable mild stress (CUMS) model. GW117 was administered via oral gavage for 21 days to evaluate its sustained anxiolytic effects, with behavioral tests including the NSFT, the Vogel-conflict test, and the O-maze test.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
Background: BMAL1, a key regulator of circadian rhythms, plays a multifaceted role in brain function. However, the complex interplay between BMAL1, memory, neuroinflammation, and neurotransmitter regulation remains poorly understood. To investigate these interactions, we conducted a study using BMAL1-haplodeficient mice (BMAL1).
View Article and Find Full Text PDFActa Neuropsychiatr
November 2024
Department of Psychiatry, Firat University School of Medicine, Elazig, Turkey.
Objectives: Clozapine is an atypical antipsychotic crucial for treatment-resistant schizophrenia, characterised by its multi-receptor targeting, including serotonin (5-HT2A, 5-HT2C) and dopamine (D1, D2, D3, D4) receptors, among others. This broad mechanism is effective against positive symptoms of schizophrenia with a lower incidence of extrapyramidal side effects. However, clozapine poses significant haematological risks, notably agranulocytosis, necessitating stringent blood monitoring protocols.
View Article and Find Full Text PDFPharmacol Biochem Behav
December 2024
Psychedelic Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czechia. Electronic address:
Rationale: Mescaline is a classical psychedelic compound with a phenylethylamine structure that primarily acts on serotonin 5-HT2A/C receptors, but also binds to 5-HT1A and 5-HT2B receptors. Despite being the first psychedelic ever isolated and synthesized, the precise role of different serotonin receptor subtypes in its behavioral pharmacology is not fully understood.
Objectives: In this study, we aimed to investigate how selective antagonists of 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT1A receptors affect the behavioral changes induced by subcutaneous administration of mescaline (at doses of 10, 20, and 100 mg/kg) in rats.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!