Touch is a complex sensing modality owing to large number of receptors (mechano, thermal, pain) nonuniformly embedded in the soft skin all over the body. These receptors can gather and encode the large tactile data, allowing us to feel and perceive the real world. This efficient somatosensation far outperforms the touch-sensing capability of most of the state-of-the-art robots today and suggests the need for neural-like hardware for electronic skin (e-skin). This could be attained through either innovative schemes for developing distributed electronics or repurposing the neuromorphic circuits developed for other sensory modalities such as vision and audio. This Review highlights the hardware implementations of various computational building blocks for e-skin and the ways they can be integrated to potentially realize human skin-like or peripheral nervous system-like functionalities. The neural-like sensing and data processing are discussed along with various algorithms and hardware architectures. The integration of ultrathin neuromorphic chips for local computation and the printed electronics on soft substrate used for the development of e-skin over large areas are expected to advance robotic interaction as well as open new avenues for research in medical instrumentation, wearables, electronics, and neuroprosthetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scirobotics.abl7344 | DOI Listing |
JMIR Med Inform
January 2025
School of Software, Taiyuan University of Technology, Jingzhong, China.
Background: The prompt and accurate identification of mild cognitive impairment (MCI) is crucial for preventing its progression into more severe neurodegenerative diseases. However, current diagnostic solutions, such as biomarkers and cognitive screening tests, prove costly, time-consuming, and invasive, hindering patient compliance and the accessibility of these tests. Therefore, exploring a more cost-effective, efficient, and noninvasive method to aid clinicians in detecting MCI is necessary.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
Dermatology Research Institute, Calgary, Alberta, Canada; Division of Dermatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Skin Health & Wellness Centre, Calgary, Alberta, Canada; Division of Dermatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada; Section of Community Pediatrics, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Section of Pediatric Rheumatology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada. Electronic address:
Analyst
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, 516007, China.
Disordered polymerization of polymers widens the polymerization degree distribution, which leads to uncontrollable thickness and significantly weakens their sensing performance. Herein, poly(sodium -styrenesulfonate)-functionalized reduced graphene oxide (PSS-rGO) with multichannel chain structures coated with thin polyaniline layer (PSS-rGO/PANI) nanocomposites was synthesized a facile interfacial polymerization route. The morphology and microstructure of the PSS-rGO/PANI nanocomposites were characterized using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM).
View Article and Find Full Text PDFBiophys Rev (Melville)
March 2025
Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh.
Atrial fibrillation (AF) is recognized as a developing global epidemic responsible for a significant burden of morbidity and mortality. To counter this public health crisis, the advancement of artificial intelligence (AI)-aided tools and methodologies for the effective detection and monitoring of AF is becoming increasingly apparent. A unified strategy from the international research community is essential to develop effective intelligent tools and technologies to support the health professionals for effective surveillance and defense against AF.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Graduate, Nanjing Sport Institute, Nanjing, Jiangsu, China.
Objective: Sleep is the most efficient means of recovery for athletes, guaranteeing optimal athletic performance. However, many athletes frequently experience sleep problems. Our study aims to describe the sleep-wake patterns of fencing athletes and determine whether factors, such as sex, competitive level and training schedules, could affect the sleep-wake rhythm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!