Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Temporal measures (latencies) in the event-related potentials of the EEG (ERPs) are a valuable tool for estimating the timing of mental processes, one which takes full advantage of the high temporal resolution of the EEG. Especially in larger scale studies using a multitude of individual EEG-based tasks, the quality of latency measures often suffers from high and low frequency noise residuals due to the resulting low trial counts (because of compressed tasks) and because of the limited feasibility of visual inspection of the large-scale data. In the present study, we systematically evaluated two different approaches to latency estimation (peak latencies and fractional area latencies) with respect to their data quality and the application of noise reduction by jackknifing methods. Additionally, we tested the recently introduced method of Standardized Measurement Error (SME) to prune the dataset. We demonstrate that fractional area latency in pruned and jackknifed data may amplify within-subjects effect sizes dramatically in the analyzed data set. Between-subjects effects were less affected by the applied procedures, but remained stable regardless of procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176764 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0268916 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!