A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a case-finding algorithm for the identification of non-small cell lung cancers in a region-wide Italian pathology registry. | LitMetric

Purpose: To develop and validate a case-finding algorithm for the identification of Non-Small Cell Lung Cancer (NSCLC) cases in a region-wide Italian pathology registry (PR).

Materials And Methods: Data collected between 2009 and 2017 in the PR and the Pharmacy Database of the University Hospital of Siena and the PR of Tuscany region were used. A NSCLC-identification algorithm based on free-text keywords and SNOMED morphology and topography codes was designed and tested on data from Siena: indication for drug use (i.e. NSCLC) was the reference standard for sensitivity (SE); positive predictive value (PPV) was estimated through manual review. Algorithm modifications were then tested to improve algorithm performance: PPV was calculated against validated dataset from PR of Siena; a range of SE [min-max] was estimated in PR of Tuscany using analytical formulae that assumed NSCLC incidence equal either to 80% or 90% of overall lung cancer incidence recorded in Tuscany. The algorithm modification with the best performance was chosen as the final version of the algorithm. A random sample of 200 cases was extracted from the PR of Tuscany for manual review.

Results: The first version of the algorithm showed a PPV of 74.7% and SE of 79% in PR of Siena. The final version of the algorithm had a SE in PR of Tuscany that grew with calendar time (2009 = [24.7%-28%]; 2017 = [57.9%-65.1%]) and a PPV of 93%.

Conclusions: The final NSCLC-finding algorithm showed with very high PPV. SE was in line with the expected contribution of PR to overall cases captured in the regional Cancer Registry, with a trend of increase over calendar time. Given the promising algorithm validity and the wide use of SNOMED terminology in electronic pathology records, the proposed algorithm is expected to be easily adapted to other electronic databases for (pharmaco)epidemiology purposes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176782PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269232PLOS

Publication Analysis

Top Keywords

algorithm
12
version algorithm
12
case-finding algorithm
8
algorithm identification
8
identification non-small
8
non-small cell
8
cell lung
8
region-wide italian
8
italian pathology
8
pathology registry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!