AI Article Synopsis

  • Modifying neural activity is crucial for understanding brain functions and developing medical therapies, but there's a gap in the literature discussing neurobiological models from a formal control systems perspective.
  • Existing control solutions are often empirical, lacking rigorous theoretical frameworks, which limits their effectiveness in applying to neurobiological systems.
  • This paper aims to survey and analyze dynamical neurobiological models for potential closed-loop control schemes, providing a comprehensive guide for future discussions and research in control methodologies for neural behavior modification.

Article Abstract

Modifying neural activity is a substantial goal in neuroscience that facilitates the understanding of brain functions and the development of medical therapies. Neurobiological models play an essential role, contributing to the understanding of the underlying brain dynamics. In this context, control systems represent a fundamental tool to provide a correct articulation between model stimulus (system inputs) and outcomes (system outputs). However, throughout the literature there is a lack of discussions on neurobiological models, from the formal control perspective. In general, existing control proposals applied to this family of systems, are developed empirically, without theoretical and rigorous framework. Thus, the existing control solutions, present clear and significant limitations. The focus of this work is to survey dynamical neurobiological models that could serve for closed-loop control schemes or for simulation analysis. Consequently, this paper provides a comprehensive guide to discuss and analyze control-oriented neurobiological models. It also provides a potential framework to adequately tackle control problems that could modify the behavior of single neurons or networks. Thus, this study constitutes a key element in the upcoming discussions and studies regarding control methodologies applied to neurobiological systems, to extend the present research and understanding horizon for this field.

Download full-text PDF

Source
http://dx.doi.org/10.1109/RBME.2022.3180559DOI Listing

Publication Analysis

Top Keywords

neurobiological models
16
control
8
closed-loop control
8
control perspective
8
existing control
8
neurobiological
5
dynamical models
4
models neuroscience
4
neuroscience closed-loop
4
perspective modifying
4

Similar Publications

Background: Significant progress has been made in elucidating the genetic underpinnings of Autism Spectrum Disorder (ASD). However, there are still significant gaps in our understanding of the link between genomics, neurobiology and clinical phenotype in scientific discovery. New models are therefore needed to address these gaps.

View Article and Find Full Text PDF

Down syndrome (DS), a genetic condition caused by trisomy 21 (T21), manifests various neurological symptoms, including intellectual disability, early neurodegeneration, and early-onset dementia. N-glycosylation is a protein modification that plays a critical role in numerous neurobiological processes and whose dysregulation is associated with a range of neurological disorders. However, whether N-glycosylation of neural glycoproteins is affected in DS has not been studied.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) is a serious psychiatric disorder that occurs after an individual has witnessed or experienced a major traumatic event. Emotional contagion seems to play an important role in witnessing trauma, highlighting the importance of understanding the neurobiological consequences of psychological or emotional stress and its impact on the individual's mental health. Therefore, understanding the relationship between emotional contagion and PTSD susceptibility and the abnormal neurobiological and behavioral changes behind it could help find effective molecular treatment targets.

View Article and Find Full Text PDF

Objectives: To assess glymphatic function and white matter integrity in children with autism spectrum disorder (ASD) using multi-parametric MRI, combined with machine learning to evaluate ASD detection performance.

Materials And Methods: This retrospective study collected data from 110 children with ASD (80 exploratory, 43 validation) and 68 typically developing children (50 exploratory, 18 validation) from two centers. The automated diffusion tensor imaging along the perivascular space (aDTI-ALPS), fractional anisotropy (FA), cerebrospinal fluid volume, and perivascular space (PVS) volume indices were extracted from DTI, three-dimensional T1-weighted, and T2-weighted images.

View Article and Find Full Text PDF

Characterizing childhood trauma in individuals based on patterns of intrinsic brain connectivity.

J Affect Disord

January 2025

The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China. Electronic address:

Childhood maltreatment represents a strong psychological stressor that may lead to the development of later psychopathology as well as a heightened risk of health and social problems. Despite a surge of interest in examining behavioral, neurocognitive, and brain connectivity profiles sculpted by such early adversity over the past decades, little is known about the neurobiological substrates underpinning childhood maltreatment. Here, we aim to detect the effects of childhood maltreatment on whole-brain resting-state functional connectivity (RSFC) in a cohort of healthy adults and to explore whether such RSFC profiles can be used to predict the severity of childhood trauma in subjects based on a data-driven connectome-based predictive modeling (CPM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!