This article studies self-supervised graph representation learning, which is critical to various tasks, such as protein property prediction. Existing methods typically aggregate representations of each individual node as graph representations, but fail to comprehensively explore local substructures (i.e., motifs and subgraphs), which also play important roles in many graph mining tasks. In this article, we propose a self-supervised graph representation learning framework named cluster-enhanced Contrast (CLEAR) that models the structural semantics of a graph from graph-level and substructure-level granularities, i.e., global semantics and local semantics, respectively. Specifically, we use graph-level augmentation strategies followed by a graph neural network-based encoder to explore global semantics. As for local semantics, we first use graph clustering techniques to partition each whole graph into several subgraphs while preserving as much semantic information as possible. We further employ a self-attention interaction module to aggregate the semantics of all subgraphs into a local-view graph representation. Moreover, we integrate both global semantics and local semantics into a multiview graph contrastive learning framework, enhancing the semantic-discriminative ability of graph representations. Extensive experiments on various real-world benchmarks demonstrate the efficacy of the proposed over current graph self-supervised representation learning approaches on both graph classification and transfer learning tasks.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3177775DOI Listing

Publication Analysis

Top Keywords

graph representation
16
representation learning
16
graph
14
self-supervised graph
12
global semantics
12
semantics local
12
local semantics
12
cluster-enhanced contrast
8
graph representations
8
learning framework
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!