AI Article Synopsis

  • Bread wheat is vital for food production but has limited tolerance to salinity stress, necessitating improved breeding methods for better resistance.
  • Researchers identified nine quantitative trait loci (QTL) related to salt tolerance in a specific wheat population, utilizing advanced phenotyping and genotyping techniques.
  • The findings aim to assist in developing new, more salt-tolerant wheat cultivars by pinpointing relevant QTL and potential candidate genes within those regions.

Article Abstract

Bread wheat (Triticum aestivum L.) is one of the most important food crops, however it is only moderately tolerant to salinity stress. To improve wheat yield under saline conditions, breeding for improved salinity tolerance of wheat is needed. We have identified nine quantitative trail loci (QTL) for different salt tolerance sub-traits in a recombinant inbred line (RIL) population, derived from the bi-parental cross of Excalibur × Kukri. This population was screened for salinity tolerance subtraits using a combination of both destructive and non-destructive phenotyping. Genotyping by sequencing (GBS) was used to construct a high-density genetic linkage map, consisting of 3236 markers, and utilised for mapping QTL. Of the nine mapped QTL, six were detected under salt stress, including QTL for maintenance of shoot growth under salinity (QG ( 1-5 ) .asl -5A , QG ( 1-5 ) .asl -7B ) sodium accumulation (QNa.asl -2A ), chloride accumulation (QCl.asl -2A , QCl.asl -3A ) and potassium : sodium ratio (QK :Na.asl -2DS2 ). Potential candidate genes within these QTL intervals were shortlisted using bioinformatics tools. These findings are expected to facilitate the breeding of new salt tolerant wheat cultivars. Soil salinity causes major yield losses in bread wheat, which is moderately tolerant to salinity stress. Using high throughput genotyping and phenotyping techniques, we identified quantitative trail loci (QTL) for different salt tolerance sub-traits in bread wheat and shortlisted potential candidate genes. These QTL and candidate genes may prove useful in breeding for salt tolerant wheat cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP20167_CODOI Listing

Publication Analysis

Top Keywords

salt tolerance
12
bread wheat
12
candidate genes
12
qtl
8
wheat
8
destructive non-destructive
8
non-destructive phenotyping
8
moderately tolerant
8
tolerant salinity
8
salinity stress
8

Similar Publications

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Systematic Analysis of Cotton RING E3 Ubiquitin Ligase Genes Reveals Their Potential Involvement in Salt Stress Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.

The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.

View Article and Find Full Text PDF

Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance.

View Article and Find Full Text PDF

Time-Course Transcriptomics Analysis Reveals Molecular Mechanisms of Salt-Tolerant and Salt-Sensitive Cotton Cultivars in Response to Salt Stress.

Int J Mol Sci

January 2025

Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong 037009, China.

Salt stress is an environmental factor that limits plant seed germination, growth, and survival. We performed a comparative RNA sequencing transcriptome analysis during germination of the seeds from two cultivars with contrasting salt tolerance responses. A transcriptomic comparison between salt-tolerant cotton cv Jin-mian 25 and salt-sensitive cotton cv Su-mian 3 revealed both similar and differential expression patterns between the two genotypes during salt stress.

View Article and Find Full Text PDF

Function of Nodulation-Associated GmNARK Kinase in Soybean Alkali Tolerance.

Int J Mol Sci

January 2025

Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin 150030, China.

Soybean () is a vital crop that is rich in high-quality protein and edible oil for human nutrition and agriculture. Saline-alkali stress, a severe environmental challenge, significantly limits soybean productivity. In this study, we found that the nodule receptor kinase GmNARK enhances soybean tolerance to alkali stress besides nodulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!