Isolation of Candida auris in Clinical Specimens.

Methods Mol Biol

Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India.

Published: June 2022

AI Article Synopsis

  • Candida auris is a multidrug-resistant yeast that causes serious bloodstream infections, complicating its identification due to issues with misidentification and slow diagnostic methods.
  • New methods like CHROMagar™ Candida Plus and molecular techniques such as PCR and sequencing have improved the ability to accurately identify C. auris in clinical samples.
  • Although some traditional systems struggle with this identification, advancements in molecular diagnostics show promise for faster and more reliable detection.

Article Abstract

Candida auris is a multidrug-resistant yeast causing healthcare-associated outbreaks of blood stream infections worldwide. Currently, C. auris isolation and identification is complicated by issues such as misidentification and long turnaround time associated with application of commonly used diagnostic tools. Based on phenotypic characteristics, differentiation of C. auris from related Candida haemulonii complex spp. is problematic. Candida auris can be misidentified using biochemical-based systems such as VITEK 2 YST, API 20C, BD Phoenix yeast identification system, and MicroScan. C. auris growth at 42 °C and in the presence of 10% NaCl helps in presumptive identification of this yeast from related Candida haemulonii complex spp. A new CHROMagar™ Candida Plus agar is an excellent alternative to current conventional mycological media for the screening of patients colonized/infected with Candida auris. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) can differentiate C. auris from other Candida species, but not all the reference databases included in MALDI-TOF devices allow for detection. Currently, accurate identification of C. auris can be performed using the updated FDA-approved libraries or "research use-only" libraries. Molecular techniques have greatly enhanced the diagnosis of C. auris. Sequencing of rDNA genetic loci, namely, internal transcribed spacer and D1/D2 region of large subunit (LSU), and PCR/qPCR assays has successfully been applied for identification of C. auris. Real-time PCR assays bear incomparable potential of being the most efficient tool for high-throughput screening of surveillance samples. If properly validated, they can deliver the diagnostic result within several hours, since the DNA can be isolated directly from the patient specimen without the need of obtaining a colony. In this chapter we detailed the isolation of Candida auris from various clinical specimens and its currently available identification methods and hitches.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2417-3_1DOI Listing

Publication Analysis

Top Keywords

candida auris
20
auris
12
isolation candida
8
auris clinical
8
clinical specimens
8
candida
8
auris candida
8
candida haemulonii
8
haemulonii complex
8
complex spp
8

Similar Publications

Unlabelled: is an emergent fungal pathogen of significant interest for molecular research because of its unique nosocomial persistence, high stress tolerance and common multidrug resistance. To investigate the molecular mechanisms of these or other phenotypes, a handful of CRISPR-Cas9 based allele editing tools have been optimized for . Nonetheless, allele editing in this species remains a significant challenge, and different systems have different advantages and disadvantages.

View Article and Find Full Text PDF

Fungal infections cause millions of deaths annually and are challenging to treat due to limited antifungal options and increasing drug resistance. Cryptococci are intrinsically resistant to the latest generation of antifungals, echinocandins, while , a notorious global threat, is also increasingly resistant. We performed a natural product extract screen for rescue of the activity of the echinocandin caspofungin against H99, identifying butyrolactol A, which restores echinocandin efficacy against resistant fungal pathogens, including .

View Article and Find Full Text PDF

Screening of Candida auris upon admission to an intensive care unit in the United Arab Emirates.

J Infect Public Health

January 2025

Division of Medicine, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates; Environmental Safety Healthcare Provider Team, Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates; Department of Family Medicine, Seoul National University Hospital, Seoul, Republic of Korea. Electronic address:

Background: Candida auris screening is one of the crucial components of infection prevention and control measures to curb the spread of C. auris. However, previous research has yielded various results on the effectiveness of C.

View Article and Find Full Text PDF

Microspheres based on galactomannan and Spondias purpurea L. extract to increase antifungal and antibiofilm efficacy against Candida spp.

Int J Biol Macromol

January 2025

Laboratory of Polymers and Materials Innovation, Department of Organic and Inorganic Chemistry, Sciences Center, Federal University of Ceará, Campus of Pici, Zip Code 60440-900 Fortaleza, CE, Brazil. Electronic address:

The ongoing problem of an increasing resistance of Candida spp. to available antifungals, has made it necessary the search for new therapeutic alternatives. The aim of this work was to develop a microsphere based on Caesalpinia ferrea galactomannan and Spondias purpurea L.

View Article and Find Full Text PDF

A Novel and Robust Method for Investigating Fungal Biofilm.

Bio Protoc

January 2025

Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.

, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!