Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment.

Appl Biochem Biotechnol

School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, 310053, Hangzhou, People's Republic of China.

Published: October 2022

Corncob as an abundant and low-cost waste resource has received increasing attention to produce value-added chemicals, it is rich in xylan and regarded as the most preferable feedstock for preparing high value added xylooligosaccharides. The use of xylooligosaccharides as core products can cut costs and improve the economic efficiency in biorefinery. In this study, maleic acid, as a non-toxic and edible acidic catalyst, was employed to pretreat corncob and produce xylooligosaccharides. Firstly, the response surface methodology experimental procedure was employed to maximize the yield of the xylooligosaccharides; a yield of 52.9% (w/v) was achieved with 0.5% maleic acid (w/v) at 155 °C for 26 min. In addition, maleic acid pretreatment was also beneficial to enhance the enzymatic hydrolysis efficiency, resulting in an enzymatic glucose yield of 85.4% (w/v) with a total of 10% solids loading. Finally, a total of 160 g of xylooligosaccharides and 275 g glucose could be produced from 1000 g corncob starting from the maleic acid pretreatment. Overall, a cascade processing for converting corncob to xylooligosaccharides and glucose by sequential maleic acid pretreatment and enzymatic hydrolysis was successfully designed for the corncob wastes utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-03985-7DOI Listing

Publication Analysis

Top Keywords

maleic acid
24
acid pretreatment
16
cascade processing
8
processing converting
8
converting corncob
8
corncob xylooligosaccharides
8
xylooligosaccharides glucose
8
enzymatic hydrolysis
8
corncob
6
xylooligosaccharides
6

Similar Publications

A Microwave-Strengthened Supramolecular Adhesive: from Flexible Pressure Sensitive Bonding to Strong and Muti-Reusable Hot Melt Bonding.

Small

January 2025

Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.

A microwave-strengthened supramolecular adhesive by introducing maleic acid amide bonds into the cross-linked networks of catechol-based monomers and iron oxide nanoparticles is reported. Under microwave irradiation, the supramolecular adhesive can be rapidly heated up, causing the transformation from maleic acid amide bonds to maleimide bonds and thus the increase of its cohesive strength. The supramolecular adhesive can flexibly bond substrates like pressure sensitive adhesives during the bonding procedure and shows an adhesion strength of 0.

View Article and Find Full Text PDF

Pretreatment of lignocellulosic biomass is crucial yet challenging for sustainable energy production. This study focuses on enhancing enzymatic accessibility of cellulose in oil palm empty fruit bunches by optimizing pretreatment parameters to improve glucose and ethanol yields while reducing fermentation inhibitors. It evaluates the impact of maleic acid concentrations on biorefinery processes.

View Article and Find Full Text PDF

Introduction: Poly(methyl vinyl ether co-maleic acid) (PMVE/MA) hydrogel microneedles (HMN) are investigated for transdermal delivery of macromolecular drugs owing to their biocompatibility and super-swelling properties. However, the drug delivery efficacy reduces with increasing molecular weight due to the entrapment within the HMN matrices. Furthermore, integrating external drug reservoirs extends the drug diffusion path and reduces the efficiency of drug permeation.

View Article and Find Full Text PDF

Introduction: As a widely used Chinese herbal medicine, Mume Fructus pulp (MFP) has rich nutritional value and biological activity, but its quality control research is relatively scarce.

Objectives: The objective of the study was to evaluate the quality difference between MFPs from different origins and its adulterant apricot pulp (APP), and to identify potential quality markers.

Methods: The chemical compositions were identified by untargeted metabolomics analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with feature-based molecular networking.

View Article and Find Full Text PDF

Lipid nanoparticles formed with copolymers are a new and increasingly powerful tool for studying membrane proteins, but the extent to which these systems affect the physical properties of the membrane is not completely understood. This is critical to understanding the caveats of these new systems and screening for structural and functional artifacts that might be caused in the membrane proteins they are used to study. To better understand these potential effects, the fluid properties of dipalmitoylphosphatidylcholine lipid bilayers were examined by electron paramagnetic resonance (EPR) spectroscopy with spin-labeled reporter lipids in either liposomes or incorporated into nanoparticles with the copolymers diisobutylene-maleic acid or styrene maleic acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!