Thiyl radicals offer unique catalytic patterns for the direct covalent activation of alkenes. However, important limitations in terms of structural diversity and handling have hampered the routine use of thiyl radicals in covalent radical catalysis. Herein, we report a new class of cationic sulfur-centered radicals to achieve covalent radical catalysis. Their generation from highly modular thioureas by photoredox catalysis make their utilization very simple and reliable. The synthetic potential and the versatility of the catalytic system were finally evaluated in a (3+2)-radical cascade between vinylcyclopropanes and olefins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202205596 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Institute of Materials Research and Engineering, Sensor and Flexible Electronics, 2 Fusionopolis Way, 138634, SINGAPORE.
Radical covalent organic frameworks (RCOFs) have demonstrated significant potential in redox catalysis and energy conversion applications. However, the synthesis of stable RCOFs with well-defined neutral carbon radical centers is challenging due to the inherent radical instability, limited synthetic methods and characterization difficulties. Building upon the understanding of stable carbon radicals and structural modulations for preparing crystalline COFs, herein we report the synthesis of a crystalline carbon-centered RCOF through a facile post-oxidation process.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.
Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, PR China. Electronic address:
Proteins and polyphenols exhibit distinct biological activities and functional properties. A comprehensive investigation into the formation mechanisms, structures, and functional properties of protein-polyphenol complexes will deepen our understanding of their interactions and establish a theoretical foundation and technical support for development of novel functional foods and pharmaceutical products. The almond protein-phloretin (AP-PHL) covalent complex was synthesized through the covalent binding of hydroxyl radicals to phloretin (PHL), utilizing almond protein (AP) as the raw material.
View Article and Find Full Text PDFJ Mol Model
January 2025
Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.
Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!