Background: Peel color regulated by pigment metabolism is one of the most crucial indicators affecting the commodity values of citrus fruit. Storage temperature is a vital environmental factor that regulates the fruit pigmentation.
Results: Results showed that the peel coloring process was significantly inhibited when mandarin fruit were stored at 5 and 32 °C with normal coloring at 25 °C as the control. However, the inhibitive mechanisms of 5 and 32 °C storage were different. At 5 °C, higher levels of CcNYC and CcCHL2 were detected, which indicated that 5 °C induces the circulation of chlorophyll rather than inhibits chlorophyll degradation. CcPSY2, CcCHYB, and CcZEP exhibited higher expression levels in fruit stored at 5 °C, which accelerated the accumulation of carotenoids. In fruit stored at 32 °C, CcNYC, CcPAO, and CcCHL2 exhibited lower expression levels than those fruit stored at 5 °C, and the expressions of CcPSY2, CcCHYB, and CcZEP were down regulated, implying the carotenoid synthesis was suppressed.
Conclusion: Storage at 5 °C inhibited the postharvest coloring of mandarin fruit mainly by activating the cycle of chlorophyll, although it promotes the accumulation of carotenoids at the same time, but chlorophyll covers the color of carotenoids. Storage at 32 °C inhibited mandarin fruit coloring mainly by inhibiting the degradation of chlorophyll. Compared with the change of individual chlorophyll or carotenoid content, the change of the ratio of chlorophyll and carotenoid had a more important role in the coloration of mandarin fruit. This research offers valuable details for understanding the effect of temperature on the coloring process of postharvest citrus fruit. © 2022 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.12054 | DOI Listing |
New Phytol
January 2025
Department of Fruit Tree Sciences, The Volcani Center ARO, 68 HaMaccabim Road, Rishon LeZion, 7505101, Israel.
Furanocoumarins (FCs) are plant defence compounds derived from the phenylpropanoid pathway via the coumarin umbelliferone that harbour some therapeutic benefits yet are the underlying cause of 'grapefruit-drug interactions' in humans. Most of the pathway genes have not been identified in citrus. We employed a genetic/Omics approach on citrus ancestral species and F1 populations of mandarin × grapefruit and mandarin × pummelo.
View Article and Find Full Text PDFPostepy Biochem
December 2024
Katedra Biotechnologii, Wydział Nauk Biologicznych, Uniwersytet Zielonogórski.
Flavonoids are a group of plant secondary metabolites that have a number of health-promoting properties and have both preventive and therapeutic effects. Research confirms that flavonoids work, among others: antiviral and anticancer. Apigenin, luteolin, isorhamnetin, kaempferol, myricetin, quercetin, hesperetin, naringenin, epicatechin and genistein have documented antiviral activity.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Life Science, Health, and Health Professions, University of Rome "Link Campus", 00165 Rome, Italy.
Mandarin, one of the winter fruits commonly used in the preparation of foods and juices, is a fruit native to China and Southeast Asia. In this work, essential oils (EOs) obtained from by-products of the Blanco flavedo of five cultivars present and cultivated within the Botanical Garden of Palermo were chemically and biologically studied: 'Avana' (), 'Tardivo di Ciaculli' (), 'Bombajensis' (), 'Aurantifolia' (), and 'Padre Bernardino' (). The GC and GC-MS analysis performed on all the extracted samples clearly highlighted the notable presence of limonene, a characteristic hydrocarbon monoterpene of EOs of the genus.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
The publication of several high-quality genomes has contributed greatly to clarifying the evolution of citrus. However, due to their complex genetic backgrounds, the origins and evolution of many citrus species remain unclear. We assembled de novo the 294-Mbp chromosome-level genome of a more than 200-year-old primitive papeda (DYC002).
View Article and Find Full Text PDFMol Breed
January 2025
National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China.
Unlabelled: Male sterility is an important trait for breeding and for the seedless fruit production in citrus. We identified one seedling which exhibiting male sterility and seedlessness (named hereafter), from a cross between two fertile parents, with sour orange () as seed parent and Ponkan mandarin () as pollen parent. Analysis using pollen viability staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) revealed that the mature pollen of the was aborted, displaying collapse and deformity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!