Background: The present study directly tested the crucial role of intestinal gastrin/CCKBR (cholecystokinin B receptor) in the treatment of salt-sensitive hypertension.

Methods: Adult intestine-specific -knockout mice ( ) and Dahl salt-sensitive rats were studied on the effect of high salt intake (8% NaCl, 6-7 weeks) on intestinal NaH exchanger 3 expression, urine sodium concentration, and blood pressure. High-salt diet increased urine sodium concentration and systolic blood pressure to a greater extent in mice and Dahl salt-sensitive rats than their respective controls, mice and SS13 rats. We constructed gastrin-SiO microspheres to enable gastrin to stimulate specifically and selectively intestinal CCKBR without its absorption into the circulation.

Results: Gastrin-SiO microspheres treatment prevented the high salt-induced hypertension and increase in urine Na concentration by inhibiting intestinal NaH exchanger 3 trafficking and activity, increasing stool sodium without inducing diarrhea. Gastrin-mediated inhibition of intestinal NaH exchanger 3 activity, related to a PKC (protein kinase C)-mediated activation of NHERF1 and NHERF2.

Conclusions: These results support a crucial role of intestinal gastrin/CCKBR in decreasing intestinal sodium absorption and keeping the blood pressure in the normal range. The gastrointestinal administration of gastrin-SiO microspheres is a promising and safe strategy to treat salt-sensitive hypertension without side effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278716PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.18791DOI Listing

Publication Analysis

Top Keywords

intestinal gastrin/cckbr
12
intestinal nah
12
nah exchanger
12
blood pressure
12
gastrin-sio microspheres
12
intestinal
9
gastrin/cckbr cholecystokinin
8
cholecystokinin receptor
8
salt-sensitive hypertension
8
inhibiting intestinal
8

Similar Publications

Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na/H Exchanger 3 Activity Through a PKC (Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway.

Hypertension

August 2022

NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.).

Background: The present study directly tested the crucial role of intestinal gastrin/CCKBR (cholecystokinin B receptor) in the treatment of salt-sensitive hypertension.

Methods: Adult intestine-specific -knockout mice ( ) and Dahl salt-sensitive rats were studied on the effect of high salt intake (8% NaCl, 6-7 weeks) on intestinal NaH exchanger 3 expression, urine sodium concentration, and blood pressure. High-salt diet increased urine sodium concentration and systolic blood pressure to a greater extent in mice and Dahl salt-sensitive rats than their respective controls, mice and SS13 rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!