Several types of cheeses including white brined cheese have been linked to listeriosis outbreaks worldwide. This study aimed to (i) investigate the in vitro inhibitory activity of zinc oxide (ZnO) nanoparticles (NPs) at concentrations of 0.0125-0.1% against three Listeria monocytogenes strains at 10 or 37°C, (ii) evaluate the antimicrobial efficiency of chitosan-based coating containing 1.0% ZnO NPs against L. monocytogenes on the surface or inside vacuum-packaged white brined cheese at 4 or 10°C, and iii) determine the migration of ZnO NPs from the surface to the interior of cheeses using energy dispersive X-ray analysis (EDX). The antimicrobial activity of ZnO NPs was higher at 37°C than at 10°C. The initial numbers (4.0 log CFU/ml) of two L. monocytogenes strains were reduced below detectable levels, while the third strain was reduced by 1.2 log CFU/ml at 37°C. At 10°C, the initial L. monocytogenes numbers were reduced by 0.4-1.9 log CFU/ml. Chitosan coating containing 1.0% ZnO NPs reduced L. monocytogenes numbers by 1.5 and 3.7 log CFU/g on the surface or by 0.9 and 1.5 log CFU/g in the interior of vacuum-packed cheese stored at 10 or 4°C, respectively. The EDX results showed that ZnO NP levels remained constant on the cheese surface with no indication of migration into the cheese matrix at the end of storage. Practical Application: Chitosan and ZnO are antimicrobial agents and their combination in edible coatings has the potential for inactivating foodborne pathogens. Chitosan coating containing ZnO NPs can be used as an effective active packaging material to reduce numbers of L. monocytogenes in white brined cheese.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.16208 | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Menoufia University, Shibin El-Kom, 32511, Egypt.
In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.
View Article and Find Full Text PDFJ Vis Exp
December 2024
Department of Cell Biology, School of Life Sciences, Central South University;
The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Nuclear Research Centre of Birine, Ain Oussera, Djelfa 17200, Algeria. Electronic address:
There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!