Background: When an object traverses through the cranium leaving behind both an entry and exit wound, it is called perforating brain injury. Perforating open brain injury is rare. A paucity of published literature on such cases and a lack of a standard management protocol pose significant challenges in managing such cases.
Case Description: We present a case of a 24-year-old man who worked as a carpenter at the construction site. He slipped while working and fell from a height of 13 feet onto a rusty, vertically placed 3 feet iron rod located on the ground. Iron rod entered his body from the right upper chest, came out from the neck, and again re-entered through the right upper neck medial to the angle of the mandible and finally came out from the posterosuperior surface of the right side of the head. He presented to the emergency department in a conscious state, but his voice was heavy and slow-paced, and he showed signs of lower cranial nerve palsy on the right side. He underwent numerous radiological investigations. The iron rod was removed in the operation theater under strict aseptic precautions. On day 7 after surgery, he developed right lobar pneumonia, and on day 21, he developed an altered sensorium, followed by a loss of consciousness. He did not regain consciousness and, unfortunately, succumbed after 30 days of sustaining the injuries.
Conclusion: Perforating open brain injuries are rare, especially in civilian society, and are usually associated with significant morbidity and mortality. Due to a lack of standard guidelines for managing such severe injuries and limited knowledge, many patients with these injuries do not survive. Although each case presents differently, certain management principles must be followed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168336 | PMC |
http://dx.doi.org/10.25259/SNI_96_2022 | DOI Listing |
Langmuir
December 2024
Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, P.O. Box 14115-175, Tehran 21, I.R. of Iran.
The aim of this research is to explore the effectiveness of epoxy-resin@polypyrole composites as a corrosion inhibitor when applied as a coating on carbon steel 1018 in a 3.5 wt % sodium chloride electrolyte solution. The anticorrosion properties of these composite coatings can be optimized by manipulating their morphology.
View Article and Find Full Text PDFSci Data
December 2024
Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh, 11543, Saudi Arabia.
Safety is crucial in the railway industry because railways transport millions of passengers and employees daily, making it paramount to prevent injuries and fatalities. In order to guarantee passenger safety, computer vision, unmanned aerial vehicles (UAV), and artificial intelligence will be essential tools in the near future for routinely evaluating the railway environment. An unmanned aerial vehicle captured dataset for railroad segmentation and obstacle detection (UAV-RSOD) comprises high-resolution images captured by UAVs over various obstacles within railroad scenes, enabling automatic railroad extraction and obstacle detection.
View Article and Find Full Text PDFSci Rep
November 2024
Institute of Nanotechnology and Nanobiology, Jacob of Paradies University, Chopina 52, Gorzow Wielkopolski, 66-400, Poland.
This study explores the controlled, continuous production of thin carbon rods between graphite electrodes (continued electrode deposits) during an arc discharge of high voltage alternating current with a frequency of 50 Hz in liquid paraffin, along with in situ doping of the resulting material using a suspension of liquid paraffin and iron powder ( <10 μm). The surface morphology of the obtained carbon rod nanomaterials was characterized using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), scanning transmission electron microscopy (STEM) with EDX chemical composition analysis, X-ray microtomography (micro-CT), and atomic force microscopy (AFM). The AFM technique in scanning thermal microscopy (SThM) and conductive probe (CP) modes was employed to determine the temperature and electrical conductivity of the obtained nanostructures.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Physics, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, São Paulo, Brazil.
Background/objectives: Magnetic nanoparticles (MNPs) have gained attention in theranostics for their ability to combine diagnostic imaging and therapeutic capabilities in a single platform, enhancing targeted treatment and monitoring. Surface coatings are essential for stabilizing MNPs, improving biocompatibility, and preventing oxidation that could compromise their functionality. Natural rubber latex (NRL) offers a promising coating alternative due to its biocompatibility and stability-enhancing properties.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Gaona Aero Material Co., Ltd., Beijing 100081, China.
The strength of ultra-low carbon maraging stainless steels can be significantly enhanced by precipitating nanoscale intermetallic secondary phases. Retained or reversed austenite in the steel can improve its toughness, which is key to achieving an ideal combination of strength and toughness. Ti and Al are often used as cost-effective strengthening elements in maraging stainless steels but the synergistic toughening and strengthening mechanisms of Ti and Al have not been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!