Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this manuscript, we investigate the approximate solutions to the tangent nonlinear packaging equation in the context of fractional calculus. It is an important equation because shock and vibrations are unavoidable circumstances for the packaged goods during transport from production plants to the consumer. We consider the fractal fractional Caputo operator and Atangana-Baleanu fractal fractional operator with nonsingular kernel to obtain the numerical consequences. Both fractal fractional techniques are equally good, but the Atangana-Baleanu Caputo method has an edge over Caputo method. For illustrations and clarity of our main results, we provided the numerical simulations of the approximate solutions and their physical interpretations. This paper contributes to the new applications of fractional calculus in packaging systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078098 | PMC |
http://dx.doi.org/10.1007/s40096-021-00403-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!