Active wound dressing with physicochemical and biological characteristics is more effective in healing diabetic foot ulcer (DFU). In this study, a 3-layer electrospun nanofiber wound dressings was fabricated, while its outer, middle and inner layers of the scaffold were made of PCL, PCL/collagen and collagen nanofibers, respectively. Various amounts of Melilotus officinalis extract were also loaded in the collagen nanofibers as a biologically active compound. The diameter and morphology of the obtained nanofibers were investigated by scanning electron microscopy (SEM) and FT-IR spectroscopy to analyse the composition of prepared dressings. The efficacy of the fabricated dressings as wound healing agent was assessed in streptozotocin-induced diabetic rats. The results demonstrated that the mean diameter of nanofibers are 373 ± 179 nm, 266 ± 108 nm, 160 ± 52 nm, and 393 ± 131 nm for PCL, PCL/collagen, pure collagen, and collagen nanofibers containing 0.08 g extract, respectively. The histo-pathology and histomorphometry assessments demonstrate the herbal extract-loaded electrospun dressings (especially containing 0.08 g of the extract) are promising in improving the diabetic ulcer healing. Our results indicated that the combination of drug did not compromise the physicochemical characteristics of wound dressing, while improving its biological activities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167341 | PMC |
http://dx.doi.org/10.1007/s40200-022-00976-7 | DOI Listing |
Adv Colloid Interface Sci
January 2025
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada. Electronic address:
Biopolymers derived from natural resources are highly abundant, biodegradable, and biocompatible, making them promising candidates to replace non-renewable fossil fuels and mitigate environmental and health impacts. Nano-fibrous biopolymers possessing advantages of biopolymers entangle with each other through inter-/intra-molecular interactions, serving as ideal building blocks for gel construction. These biopolymer nanofibers often synergize with other nano-building blocks to enhance gels with desirable functions and eco-friendliness across various applications in biomedical, environmental, and energy sectors.
View Article and Find Full Text PDFTissue Cell
January 2025
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.
View Article and Find Full Text PDFArtif Organs
January 2025
Department of Thoracic and Cardiovascular Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan.
Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Current sound-absorbing materials, reliant on nonrenewable resources, pose sustainability and disposal challenges. This study introduces a novel collagen-lignin sponge (CLS), a renewable biomass-based material that combines collagen's acoustic properties with lignin's structural benefits. CLSs demonstrate high porosity (>0.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, University Hospital Munster, Munster, Germany.
Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!