Quercetin prevents insulin dysfunction in hypertensive animals.

J Diabetes Metab Disord

Graduate Program in Biomedical Sciences, Centro Universitário da Fundação Hermínio Ometto, FHO, Av. Maximiliano Barutto n° 500, Jardim Universitário, Araras, SP 13607-339 Brazil.

Published: June 2022

AI Article Synopsis

  • Angiotensin II worsens hypertension, leading to oxidative stress that negatively affects insulin action and pancreatic function.
  • Quercetin, found in certain foods, has antioxidant properties beneficial for hypertensive and diabetic conditions, which was tested in a study with Wistar rats.
  • The study found that quercetin supplementation improved insulin sensitivity, reduced lipid peroxidation, and enhanced pancreatic function, indicating its potential to counteract metabolic issues related to hypertension.

Article Abstract

Angiotensin II induced increase in hypertension enhances oxidative stress and compromises insulin action and pancreatic function. Quercetin-rich foods are beneficial for hypertensive and diabetic animals owing to their antioxidant function. The aim of this study was to evaluate the antioxidant effects of quercetin in hypertensive rats on insulin action, signaling, and secretion. Wistar rats were randomly divided into three groups: sham, hypertensive rats (H), and hypertensive rats supplemented with quercetin (HQ). After three months of initial hypertension, quercetin was administered at 50 mg/kg/day for 30 days. Our results indicate that hypertension and serum lipid peroxidation levels were reduced by quercetin supplementation. We observed increased insulin sensitivity in adipose tissue, corroborating the insulin tolerance test, HOMA index, and improvements in lipid profile. Despite normal insulin secretion at 2.8 and 20 mM of glucose, animals treated with quercetin exhibited increased number of islets per section; increased protein expression of muscarinic receptor type 3, VEGF, and catalase in islets; and hepatic mRNA levels of were normalized. In conclusion, supplementation with quercetin improved insulin action and prevented pancreatic and metabolic dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9167338PMC
http://dx.doi.org/10.1007/s40200-022-00987-4DOI Listing

Publication Analysis

Top Keywords

insulin action
12
hypertensive rats
12
quercetin
7
insulin
7
hypertensive
5
quercetin prevents
4
prevents insulin
4
insulin dysfunction
4
dysfunction hypertensive
4
hypertensive animals
4

Similar Publications

Background: Among hypertensive cohorts across different nations, the relationship between the triglyceride-glucose index (TyG) and its conjunction with obesity metrics in relation to cardiovascular disease (CVD) incidence and mortality remains to be elucidated.

Methods: This study enrolled 9,283, 164,357, and 5,334 hypertensives from the National Health and Nutrition Examination Survey (NHANES), UK Biobank (UKBB), and Shanghai Pudong cohort. The related outcomes for CVD were defined by multivariate Cox proportional hazards models, Generalized Additive Models and Mendelian randomization analysis.

View Article and Find Full Text PDF

New C-linked diarylheptanoid dimers as potential α-glucosidase inhibitors evidenced by biological, spectral and theoretical approaches.

Int J Biol Macromol

January 2025

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by elevated blood glucose levels, generally due to defects of insulin action or secretion. Inhibition of α-glucosidase, an enzyme responsible for carbohydrate degradation, is a promising strategy for managing postprandial hyperglycemia in diabetic patients. In this study, two new C-linked diarylheptanoid dimers, kaemgalanganols A (1) and B (2), were isolated from K.

View Article and Find Full Text PDF

Ultra-rapid insulin lispro is an innovative insulin analogue designed to achieve rapid onset and short duration of action, aimed at optimizing glycemic control in patients with diabetes. This was a double-blind, randomized, 2-period, crossover clamp study to evaluate the pharmacokinetics (PK) and pharmacodynamics (PD), along with safety profiles, of a potential biosimilar ultra-rapid insulin lispro compared to the reference product in healthy White men. A total of 35 healthy volunteers completed hyperinsulinemic euglycemic clamp procedures across both study periods.

View Article and Find Full Text PDF

Interplay of fatty acids, insulin and exercise in vascular health.

Lipids Health Dis

January 2025

Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA.

Fatty acid metabolism, exercise, and insulin action play critical roles in maintaining vascular health, especially relevant in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Insulin, a vasoactive hormone, induces arterial vasodilation throughout the arterial tree, increasing arterial compliance and enhancing tissue perfusion. These effects, however, are impaired in individuals with obesity and type 2 diabetes, and evidence suggests that vascular insulin resistance contributes to the pathogenesis of type 2 diabetes and its cardiovascular complications.

View Article and Find Full Text PDF

Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications.

Pharmaceuticals (Basel)

December 2024

Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530000, China.

Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!