A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Developing a Siamese Network for UTIs Risk Prediction in Immobile Patients Undergoing Stroke. | LitMetric

AI Article Synopsis

  • - Stroke patients experience immobility, which can lead to complications like urinary tract infections (UTIs), though new UTIs in hospitals are rare (4% incidence).
  • - This study aimed to create a prediction model to assess UTI risk specifically in immobile stroke patients and compared it to traditional machine learning approaches.
  • - Using a nationwide dataset of 3,982 Chinese patients, the study found that the Siamese Network outperformed traditional models in predicting UTI risk, achieving a sensitivity of 0.810 and an AUC of 0.828.

Article Abstract

Stroke patients tend to suffer from immobility, which increases the possibility of post-stroke complications. Urinary tract infections (UTIs) are one of the complications as an independent predictor of poor prognosis of stroke patients. However, the incidence of new UTIs onsets during hospitalization was rare in most datasets with a prevalence of 4%. This imbalanced data distribution sets obstacles to establishing an accurate prediction model. Our study aimed to develop an effective prediction model to identify UTIs risk in immobile stroke patients, and (2) to compare its prediction performance with traditional machine learning models. We tackled this problem by building a Siamese Network leveraging commonly used clinical features to identifying patients with UTIs risk. Model derivation and validation were based on a nationwide dataset including 3982 Chinese patients. Results showed that the Siamese Network performed better than traditional machine learning models in imbalanced datasets (Sensitivity: 0.810; AUC: 0.828).

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220171DOI Listing

Publication Analysis

Top Keywords

siamese network
12
utis risk
12
stroke patients
12
prediction model
8
traditional machine
8
machine learning
8
learning models
8
patients
6
utis
5
developing siamese
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!