COVID-19 pandemic is taking a toll on the social, economic, and psychological well-being of people. During this pandemic period, people have utilized social media platforms (e.g., Twitter) to communicate with each other and share their concerns and updates. In this study, we analyzed nearly 25M COVID-19 related tweets generated from 20 different countries and 28 states of USA over a month. We leveraged sentiment analysis and topic modeling over this collection and clustered different geolocations based on their sentiment. Our analysis identified 3 geo-clusters (country- and US state-based) based on public sentiment and discovered 15 topics that could be summarized under three main themes: government actions, medical issues, and people's mood during the home quarantine. The proposed computational pipeline has adequately captured the Twitter population's emotion and sentiment, which could be linked to government/policy makers' decisions and actions (or lack thereof). We believe that our analysis pipeline could be instrumental for the policymakers in sensing the public emotion/support with respect to the interventions/actions taken, for example, by the government instrumentality.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220170DOI Listing

Publication Analysis

Top Keywords

sentiment analysis
8
linking tweets
4
tweets geo-localized
4
geo-localized policies
4
policies covid-19
4
covid-19 perspective
4
perspective covid-19
4
covid-19 pandemic
4
pandemic toll
4
toll social
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!