We evaluate the performance of multiple text classification methods used to automate the screening of article abstracts in terms of their relevance to a topic of interest. The aim is to develop a system that can be first trained on a set of manually screened article abstracts before using it to identify additional articles on the same topic. Here the focus is on articles related to the topic "artificial intelligence in nursing". Eight text classification methods are tested, as well as two simple ensemble systems. The results indicate that it is feasible to use text classification technology to support the manual screening process of article abstracts when conducting a literature review. The best results are achieved by an ensemble system, which achieves a F1-score of 0.41, with a sensitivity of 0.54 and a specificity of 0.96. Future work directions are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI220155DOI Listing

Publication Analysis

Top Keywords

text classification
12
article abstracts
12
classification methods
8
articles topic
8
automated screening
4
screening literature
4
literature artificial
4
artificial intelligence
4
intelligence nursing
4
nursing evaluate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!